Creativenn - Портал рукоделия

Методы электрических измерений

В зависимости от общих приемов получения результата измерения делятся на следующие виды: прямые, косвенные и совместные.

К прямым измерениям относятся те, результат которых получается непосредственно из опытных данных. Прямое измерение условно можно выразить формулой Y = Х, где Y -- искомое значение измеряемой величины; X -- значение, непосредственно получаемое из опытных данных. К этому виду измерений относятся измерения различных физических величин при помощи приборов, градуированных в установленных единицах. Например, измерения силы тока амперметром, температуры -- термометром и т. д. К этому виду измерений относятся и измерения, при которых искомое значение величины определяется непосредственным сравнением ее с мерой. Применяемые средства и простота (или сложность) эксперимента при отнесении измерения к прямому не учитываются.

Косвенным называется такое измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвенных измерениях числовое значение измеряемой величины определяется путем вычисления по формуле

Y = F (Xl, Х2 ... Хn),

где Y -- искомое значение измеряемой величины; Х1, Х2, Хn -- значения измеренных величин. В качестве примера косвенных измерений можно указать на измерение мощности в цепях постоянного тока амперметром и вольтметром.

Совместными измерениями называются такие, при которых искомые значения разноименных величин определяются путем решения системы уравнений, связывающих значения искомых величин с непосредственно измеренными величинами. В качестве примера совместных измерений можно привести определение коэффициентов в формуле, связывающей сопротивление резистора с его температурой:

Rt = R20 (1+б (T1-20)+в(T1-20)).

В зависимости от совокупности приемов использования принципов и средств измерений все методы делятся на метод непосредственной оценки и методы сравнения.

Сущность метода непосредственной оценки заключается в том, что о значении измеряемой величины судят по показанию одного (прямые измерения) или нескольких (косвенные измерения) приборов, заранее проградуированных в единицах измеряемой величины или в единицах других величин, от которых зависит измеряемая величина. Простейшим примером метода непосредственной оценки может служить измерение какой-либо величины одним прибором, шкала которого проградуирована в соответствующих единицах.

Вторая большая группа методов электрических измерений объединена под общим названием методов сравнения. К ним относятся все те методы электрических измерений, при которых измеряемая величина сравнивается с величиной, воспроизводимой мерой. Таким образом, отличительной чертой методов сравнения является непосредственное участие мер в процессе измерения.

Метод сравнения делится на следующие: нулевой, дифференциальный, замещения и совпадения.

Нулевой метод -- это метод сравнения измеряемой величины с мерой, при котором результирующий эффект воздействия величин на индикатор доводится до нуля. Таким образом, при достижении равновесия наблюдается исчезновение определенного явления, например тока в участке цепи или напряжения на нем, что может быть зафиксировано при помощи служащих для этой цели приборов -- нуль-индикаторов. Вследствие высокой чувствительности нуль-индикаторов, а также потому, что меры могут быть выполнены с большой точностью, получается и большая точность измерений.

Примером применения нулевого метода может быть измерение электрического сопротивления мостом с полным его уравновешиванием.

При дифференциальном методе, так же как и при нулевом, измеряемая величина сравнивается непосредственно или косвенно с мерой, а о значении измеряемой величины в результате сравнения судят по разности одновременно производимых этими величинами эффектов и по известной величине, воспроизводимой мерой. Таким образом, в дифференциальном методе происходит неполное уравновешивание измеряемой величины, и в этом заключается отличие дифференциального метода от нулевого.

Дифференциальный метод сочетает в себе часть признаков метода непосредственной оценки и часть признаков нулевого метода. Он может дать весьма точный результат измерения, если только измеряемая величина и мера мало отличаются друг от друга. Например, если разность этих двух величин равна 1 % и измеряется с погрешностью до 1 %, то тем самым погрешность измерения искомой величины уменьшается до 0,01%, если не учитывать погрешности меры.

Примером применения дифференциального метода может служить измерение вольтметром разности двух напряжений, из которых одно известно с большой точностью, а другое является искомой величиной.

Метод замещения заключается в поочередном измерении искомой величины прибором и измерении этим же прибором меры, воспроизводящей однородную с измеряемой величину. По результатам двух измерений может быть вычислена искомая величина. Вследствие того что оба измерения делаются одним и тем же прибором в одинаковых внешних условиях, а искомая величина определяется по отношению показаний прибора, в значительной мере уменьшается погрешность результата измерения. Так как погрешность прибора обычно неодинакова в различных точках шкалы, наибольшая точность измерения получается при одинаковых показаниях прибора.

Примером применения метода замещения может быть измерение сравнительно большого электрического сопротивления на постоянном токе путем поочередного измерения силы тока, протекающего через контролируемый резистор и образцовый. Питание цепи при измерениях должно производиться от одного и того же источника тока.

Метод совпадений -- это такой метод, при котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадение отметок шкал или периодических сигналов. Этот метод широко применяется в практике неэлектрических измерений. Примером может служить измерение длины штангенциркулем с нониусом. В электрических измерениях в качестве примера можно привести измерение частоты вращения тела стробоскопом. Укажем еще классификацию измерений по признаку изменения во времени измеряемой величины. В зависимости от того, изменяется ли измеряемая величина во времени или остается в процессе измерения неизменной, различаются статические и динамические измерения. Статическими называются измерения постоянных или установившихся значений. К ним относятся и измерения действующих и амплитудных значений величин, но в установившемся режиме.

Если измеряются мгновенные значения изменяющихся во времени величин, то измерения называются динамическими. Если при динамических измерениях средства измерений позволяют непрерывно следить за значениями измеряемой величины, такие измерения называются непрерывными. Можно осуществить измерения какой-либо величины путем измерений ее значений в некоторые моменты времени t1, t2 и т. д. В результате окажутся известными не все значения измеряемой величины, а лишь значения в выбранные моменты времени. Такие измерения называются дискретными.

Вывод

измерение электрический электротехника

Стандартизация методов и средств измерений занимает важную роль в науке и технике т. к. нашу жизнь в 21 веке невозможно представить без предметов и вещей которые нас окружают, а ведь все они при создании были кем-то и как-то измерены. Чтобы эти измерения и методы мог совершить любой человек конечно же необходимо их стандартизировать.

Суть измерения состоит в определении числового значения физической величины. Этот процесс называют измерительным преобразованием, подчеркивая связь измеряемой физической величины с полученным числом.

Список используемых источников

  • 1. «Электротехника и электроника» под ред. проф. Б.И. Петленко М.2003 г.
  • 2. «Метрология, Стандартизация, сертификация и электроизмерительная техника под редакцией К.К. Кима 2006 г.

Прямыми измерениями называют такие измерения, которые получены непосредственно с помощью измерительного прибора. К прямым измерениям можно отнести измерение длины линейкой, штангенциркулем, измерение напряжения вольтметром, измерение температуры термометром и т.п. На результатах прямых измерений могут оказать влияние различные факторы. Поэтому погрешность измерений имеет различный вид, т.е. имеет место погрешность прибора, систематические и случайные погрешности, ошибки округления при снятии отсчета со шкалы прибора, промахи. В связи с этим важно выявить в каждом конкретном эксперименте, какая из ошибок измерения является наибольшей, и если окажется, что одна из них на порядок превышает все остальные, то последними погрешностями можно пренебречь.

Если же все учитываемые погрешности по порядку величины одинаковы, то необходимо оценить совместный эффект нескольких различных погрешностей. В общем случае суммарная ошибка подсчитывается по формуле:

где  – случайная погрешность,  – погрешность прибора, – погрешность округления.

В большинстве экспериментальных исследований физическая величина измеряется не прямо, а через другие величины, которые в свою очередь определяются прямыми измерениями. В этих случаях измеряемая физическая величина определяется через прямо измеренные величины посредством формул. Такие измерения называются косвенными. На языке математики это означает, что искомая физическая величина f связана с другими величинами х 1, х 2, х 3, ,. х n функциональной зависимостью, т.е

F = f (x 1 , x 2 ,….,х n )

Примером таких зависимостей может служить объем шара

.

В данном случае косвенно измеряемой величиной является V - шара, которая определится при прямом измерении радиуса шара R. Данная измеряемая величина V является функцией одной переменной.

Другим примером может быть плотность твердого тела

. (8)

Здесь – является косвенно измеряемая величина, которая определяется прямым измерением массы тела m и косвенной величиной V . Данная измеряемая величина является функцией двух переменных, т.е.

= (m, V)

Теория погрешностей показывает, что погрешность функции оценивается суммой погрешностей всех аргументов. Погрешность функции будет тем меньше, чем меньше погрешностей её аргументов.

4.Построение графиков по экспериментальным измерениям.

Существенным моментом экспериментального исследования является построение графиков. При построении графиков, прежде всего необходимо выбрать систему координат. Наиболее распространенной является прямоугольная система координат с координатной сеткой, образованной равностоящими друг от друга параллельными прямыми (например, миллиметровая бумага). На осях координат через определенные промежутки наносятся деления в определенном масштабе для функции и аргумента.

В лабораторных работах при изучении физических явлений приходится учитывать изменения одних величин в зависимости от изменения других. Например: при рассмотрении движения тела устанавливается функциональная зависимость пройденного пути от времени; при изучении электросопротивления проводника от температуры. Можно привести еще множество примеров.

Переменную величину У называют функцией другой переменной величины Х (аргумент), если каждому значение У будет соответствовать вполне определенное значение величины Х , то можно записать зависимость функции в виде У = У(Х) .

Из определения функции следует, что для её задания необходимо указать два множества чисел (значений аргумента Х и функции У ), а так же закон взаимозависимости и соответствия между ними (Х и У ). Экспериментально функция может быть задана четырьмя способами:

    Таблицей; 2. Аналитически, в виде формулы; 3. Графически; 4. Словесно.

Например: 1. Табличный способ задания функции –зависимости величины постоянного тока I от величины напряжения U , т.е. I = f (U ) .

Таблица 2

2.Аналитический способ задания функции устанавливается формулой, при помощи которой по заданным (известным) значениям аргумента можно определить соответствующие значения функции. Например, функциональная зависимость, приведенная в таблице 2, может быть записана формулой:

(9)

3.Графический способ задания функции.

Графиком функции I = f (U ) в декартовой системе координат называется геометрическое место точек, построенное по числовым значениям координатной точки аргумента и функции.

На рис. 1 построен график зависимости I = f (U ) , заданный таблицей.

Точки, найденные на опыте и наносимые на график, отмечаются отчетливо в виде кружочков, крестиков. На графике для каждой построенной точки необходимо указывать погрешности в виде «молоточков» (см. рис 1). Размеры этих «молоточков» должны быть равны удвоенному значению абсолютных ошибок функции и аргумента.

Масштабы графиков надо выбирать так, чтобы наименьшее расстояние, отсчитываемое по графику, было бы не меньше наибольшей абсолютной погрешности измерений. Однако такой выбор масштаба не всегда удобен. В некоторых случаях удобней взять по одной из осей несколько больший или меньший масштаб.

Если исследуемый интервал значений аргумента или функции отстоит от начала координат на величину, сравнимую с величиной самого интервала, то целесообразно перенести начало координат в точку, близкую к началу исследуемого интервала, как по оси абсцисс, так и по оси ординат.

Проведение кривой (т.е. соединение экспериментальных точек) через точки обычно осуществляется в соответствии с идеями метода наименьших квадратов. В теории вероятностей показано, что наилучшим приближением к экспериментальным точкам будет такая кривая (или прямая), для которой сумма наименьших квадратов отклонений по вертикали от точки до кривой будет минимальной.

Нанесенные на координатную бумагу точки соединяют плавной кривой, причем кривая должна проходить возможно ближе ко всем экспериментальным точкам. Проводить кривую следует так, чтобы она лежала возможно ближе к точкам не превышаемые погрешности и чтобы по обе стороны кривой оказывалось приблизительно равное их количество (см. рис. 2).

Если при построении кривой одна или несколько точек выходят за пределы области допустимых значений (см. рис. 2, точки А и В ), то кривую проводят по остальным точкам, а выпавшие точки А и В как промахи не берут в учет. Затем проводят повторные измерения в этой области (точки А и В ) и устанавливается причина такого отклонения (либо это промах или законное нарушение найденной зависимости).

Если исследуемая, экспериментально построенная функция обнаруживает «особые» точки, (например, точки экстремума, перегиба, разрыва и т.д.). То увеличивается число экспериментов при малых значениях шага (аргумента) в области особых точек.

При изучении электротехники приходится иметь дело с электрическим, магнитными и механическими величинами и измерять эти величины.

Измерить электрическую, магнитную или какую-либо иную величину - это значит сравнить ее с другой однородной величиной, принятой за единицу.

В этой статье рассмотрена классификация измерений, наиболее важная для . К такой классификации можно отнести классификацию измерений с методологической точки зрения, т. е. в зависимости от общих приемов получения результатов измерений (виды или классы измерений), классификацию измерений в зависимости от использования принципов и средств измерений (методы измерений) и классификацию измерений в зависимости от динамики измеряемых величин.

Виды электрических измерений

В зависимости от общих приемов получения результата измерения делятся на следующие виды: прямые, косвенные и совместные.

К прямым измерениям относятся те, результат которых получается непосредственно из опытных данных. Прямое измерение условно можно выразить формулой Y = Х, где Y - искомое значение измеряемой величины; X -значение, непосредственно получаемое из опытных данных. К этому виду измерений относятся измерения различных физических величин при помощи приборов, градуированных в установленных единицах.

Например, измерения силы тока амперметром, температуры - термометром и т. д. К этому виду измерений относятся и измерения, при которых искомое значение величины определяется непосредственным сравнением ее с мерой. Применяемые средства и простота (или сложность) эксперимента при отнесении измерения к прямому не учитываются.

Косвенным называется такое измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвенных измерениях числовое значение измеряемой величины определяется путем вычисления по формуле Y = F(Xl, Х2 ... Хn ), где Y - искомое значение измеряемой величины; Х1 , Х2, Хn - значения измеренных величин. В качестве примера косвенных измерений можно указать на измерение мощности в цепях постоянного тока амперметром и вольтметром.

Совместными измерениями называются такие, при которых искомые значения разноименных величин определяются путем решения системы уравнений, связывающих значения искомых величин с непосредственно измеренными величинами. В качестве примера совместных измерений можно привести определение коэффициентов в формуле, связывающей сопротивление резистора с его температурой: Rt = R20

Методы электрических измерений

В зависимости от совокупности приемов использования принципов и средств измерений все методы делятся на метод непосредственной оценки и методы сравнения.

Сущность метода непосредственной оценки заключается в том, что о значении измеряемой величины судят по показанию одного (прямые измерения) или нескольких (косвенные измерения) приборов, заранее проградуированных в единицах измеряемой величины или в единицах других величин, от которых зависит измеряемая величина.

Простейшим примером метода непосредственной оценки может служить измерение какой-либо величины одним прибором, шкала которого проградуирована в соответствующих единицах.

Вторая большая группа методов электрических измерений объединена под общим названием методов сравнения . К ним относятся все те методы электрических измерений, при которых измеряемая величина сравнивается с величиной, воспроизводимой мерой. Таким образом, отличительной чертой методов сравнения является непосредственное участие мер в процессе измерения.

Методы сравнения делятся на следующие: нулевой, дифференциальный, замещения и совпадения.

Нулевой метод - это метод сравнения измеряемой величины с мерой, при котором результирующий эффект воздействия величин на индикатор доводится до нуля. Таким образом, при достижении равновесия наблюдается исчезновение определенного явления, например тока в участке цепи или напряжения на нем, что может быть зафиксировано при помощи служащих для этой цели приборов - нуль-индикаторов. Вследствие высокой чувствительности нуль-индикаторов, а также потому, что меры могут быть выполнены с большой точностью, получается и большая точность измерений.

Примером применения нулевого метода может быть измерение электрического сопротивления мостом с полным его уравновешиванием.

При дифференциальном методе , так же как и при нулевом, измеряемая величина сравнивается непосредственно или косвенно с мерой, а о значении измеряемой величины в результате сравнения судят по разности одновременно производимых этими величинами эффектов и по известной величине, воспроизводимой мерой. Таким образом, в дифференциальном методе происходит неполное уравновешивание измеряемой величины, и в этом заключается отличие дифференциального метода от нулевого.

Дифференциальный метод сочетает в себе часть признаков метода непосредственной оценки и часть признаков нулевого метода. Он может дать весьма точный результат измерения, если только измеряемая величина и мера мало отличаются друг от друга.

Например, если разность этих двух величин равна 1 % и измеряется с погрешностью до 1 %, то тем самым погрешность измерения искомой величины уменьшается до 0,01%, если не учитывать погрешности меры. Примером применения дифференциального метода может служить измерение вольтметром разности двух напряжений, из которых одно известно с большой точностью, а другое является искомой величиной.

Метод замещения заключается в поочередном измерении искомой величины прибором и измерении этим же прибором меры, воспроизводящей однородную с измеряемой величину. По результатам двух измерений может быть вычислена искомая величина. Вследствие того что оба измерения делаются одним и тем же прибором в одинаковых внешних условиях, а искомая величина определяется по отношению показаний прибора, в значительной мере уменьшается погрешность результата измерения. Так как погрешность прибора обычно неодинакова в различных точках шкалы, наибольшая точность измерения получается при одинаковых показаниях прибора.

Примером применения метода замещения может быть измерение сравнительно большого путем поочередного измерения силы тока, протекающего через контролируемый резистор и образцовый. Питание цепи при измерениях должно производиться от одного и того же источника тока. Сопротивление источника тока и прибора, измеряющего ток, должно быть очень мало по сравнению с изменяемым и образцовым сопротивлениями.

Метод совпадений - это такой метод, при котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадение отметок шкал или периодических сигналов. Этот метод широко применяется в практике неэлектрических измерений.

Примером может служить измерение длины . В электрических измерениях в качестве примера можно привести измерение частоты вращения тела стробоскопом.

Укажем еще классификацию измерений по признаку изменения во времени измеряемой величины . В зависимости от того, изменяется ли измеряемая величина во времени или остается в процессе измерения неизменной, различаются статические и динамические измерения. Статическими называются измерения постоянных или установившихся значений. К ним относятся и измерения действующих и амплитудных значений величин, но в установившемся режиме.

Если измеряются мгновенные значения изменяющихся во времени величин, то измерения называются динамическими . Если при динамических измерениях средства измерений позволяют непрерывно следить за значениями измеряемой величины, такие измерения называются непрерывными.

Можно осуществить измерения какой-либо величины путем измерений ее значений в некоторые моменты времени t1 , t2 и т. д. В результате окажутся известными не все значения измеряемой величины, а лишь значения в выбранные моменты времени. Такие измерения называются дискретными .

Измерения, как экспериментальные процедуры определения значений измеряемых величин, весьма разнообразны, что объясняется большим разнообразием физической природы измеряемых величин, различным характером их изменений во времени, различными требованиями к точности измерений и т. д.

Поэтому существуют различные виды и методы измерений.

В зависимости от способа сравнения измеряемой величины и с мерой и обработки экспериментальных данных для нахождения результата различают следующие виды измерений: прямые, косвенные и совместные (совокупные).

Прямые измерения – это измерения, при которых результат измерения получают непосредственно из опытных данных, не проводя их дополнительной логической и вычислительной обработки.

Примерами прямых измерений могут служить измерения электрической мощности с помощью ваттметра или электрического сопротивления резистора с помощью омметра. Результат измерения при этом считывается непосредственно со шкалы измерительного прибора.

Косвенные измерения – это измерение, при котором результат измерения находят на основании известной зависимости между измеряемой величиной и другими физическими величинами, которые и подвергаются прямым измерениям, после чего с использованием данной зависимости вычисляется результат измерения.

Примерами косвенных измерений являются измерения электрической мощности и сопротивления методом амперметра и вольтметра. Измерив прямым методом, т. е. с помощью амперметра и вольтметра соответственно ток, протекающий через какую-то нагрузку и падение напряжения на этой нагрузке (при том же токе) легко вычислить по известным соотношениям P = U I и R =U / I , где: P - электрическая мощность, R - электрическое сопротивление, U - падение напряжения на нагрузке, I - сила тока, протекающего через эту нагрузку, электрическую мощность, выделяющуюся на данной нагрузке и ее электрическое сопротивление.

Совместные (или совокупные ) измерения – это измерения, при которых результат получается на основании совокупности прямых измерений нескольких разнородных величин для нахождения зависимости между ними путем решения полученной системы уравнений.



Примером совместных измерений может служить измерение коэффициентов температурной зависимости электрического сопротивления проводника. В достаточно широком интервале температур эта зависимость выражается уравнением

R T = R 20 , (2.1)

где: R T - электрическое сопротивление проводника, измеренное при какой-то произвольной температуре T ;

R 20 - электрическое сопротивление того же проводника, измеренное при температуре T = 20 о С;

А и В- постоянные коэффициенты, значения которых и требуется определить в результате совместных измерений.

Чтобы иметь возможность вычислить, пользуясь данным уравнением, эти коэффициенты необходимо, как минимум, измерить это сопротивление при трех различных температурах: R 20 - при температуре T = 20 o C, R T 1 при температуре Т 1 иR T 2 – при температуре Т 2 . Имея результаты этих измерений можно составить два уравнения вида (1.2) для температур Т 1 иТ 2 (температуры также должны быть измерены) и решить полученную систему из двух уравнения относительно неизвестных коэффициентов А и В .

В зависимости от характера и способа участия меры в процессе измерения различают метод непосредственной оценки и метод сравнения.

Метод непосредственной оценки заключается в том, что вся измеряемая величина оценивается непосредственно по показаниям заранее градуированного измерительного прибора, а мера прямого участия в данном эксперименте не принимает.

Здесь имеет место лишь косвенное участие меры, т.к. с помощью меры проводилась градуировка шкалы данного прибора.

Метод сравнения характеризуется тем, что в процессе измерения непосредственное участие принимает регулируемая (многозначная) или нерегулируемая мера, с которой сравнивается измеряемая величина.

По методике осуществления процесса сравнения различают три основных разновидности метода сравнения:

Нулевой метод, который характеризуется тем, что измеряемая величина сравнивается с регулируемой мерой и в процессе сравнения производится регулирование меры до тех пор, пока она полностью не сравняется с измеряемой величиной.

Для реализации нулевого метода, очевидно, необходимо иметь индикатор равенства меры и измеряемой величины, в качестве которого обычно используется высокочувствительный прибор непосредственной оценки, на который подается сигнал, пропорциональный разности между мерой и измеряемой величиной. Регулирование меры продолжают до тех пор, пока не добьются нулевых показаний этого индикатора. Отсчет измеряемой величины производят по показаниям регулируемой меры в момент равенства меры и измеряемой величины. Точность измерений при нулевом методе определяется точностью меры и чувствительностью индикатора. При этом высокой точности от индикатора не требуется, т. к. по нему не производится отсчет измеряемой величины, а определяется лишь наличие или отсутствие разности между измеряемой величиной и мерой. Это позволяет достичь высокой точности измерений, которая ограничивается, главным образом, лишь погрешностью меры.

Дифференциальный (разностный) метод , при котором по показаниям измерительного прибора непосредственной оценки оценивается не вся измеряемая величина, а разность между этой величиной и нерегулируемой мерой.

Результат измерения при этом получают путем алгебраического сложения величины используемой меры и показаний прибора непосредственной оценки, который измеряет разность между измеряемой величиной и мерой. Поскольку эта разность может иметь и положительный, и отрицательный знак, то прибор непосредственной оценки должен реагировать на знак этой разности (при положительном знаке показания прибора складываются с величиной меры, при отрицательном – вычитаются).

Достоинство дифференциального метода состоит в том, что при малых величинах разности (т. е. когда измеряемая величина колеблется в небольших пределах около своего номинального значения) можно существенно повысить точность измерений, даже применяя для измерения этой разности измерительный прибор невысокой точности. Это объясняется тем, что этот прибор оценивает не всю измеряемую величину, а лишь ее малую долю, определяемую отклонением от номинального значения (последнему соответствует величина постоянной меры). А потому, даже если это отклонение будет измеряться с низкой точностью, это мало скажется на погрешности результата измерения, которая будет определяться, главным образом,0 погрешностью меры. Например, если отклонения измеряемой величины от номинального значения не превышают 5%, то, применяя для измерения этих отклонений прибор с предельно допустимой погрешностью в 1%, мы получим погрешность результата, обусловленную погрешностью этого прибора, не превышающую 0,05% (т.е. 1% от 5%).

Метод замещения заключается в том, что к измерительному прибору поочередно подключается измеряемая величина и регулируемая мера, и процесс сравнения заключается в том, что путем регулировки меры добиваются того же показания прибора, которое было при подключении к нему измеряемой величины.

При использовании этого метода производится не одновременное, как в предыдущих методах, а разновременное сравнение с мерой. Этот метод принадлежит к весьма точным, поскольку при замене измеряемой величины мерой никаких изменений в состоянии и действии измерительной установки не происходит, вследствие чего неточность в ее показаниях, обусловленная внутренними и внешними факторами, не оказывает влияния на результат измерения.

В зависимости от характера изменения измеряемой величины в процессе измерения различают статические и динамические измерения.

Статическими называют измерения, при которых измеряемая величина в процессе измерения остается неизменной.

Динамическими называют измерения, при которых измеряемая величина изменяется в процессе измерения.

Измерение любого вида электрических величин может быть осуществлено различными методами в зависимости от условий измерения, требуемой точности и т. д.

В практике электрических измерений используются в основном метод непосредственной оценки и метод сравнения в равновесном и неравновесном режимах.

Метод непосредственной оценки позволяет получать результат измерения непосредственно по показанию прибора, шкала которого градуирована в единицах измеряемой величины. При этом образцовая мера как вещественное воспроизведение единицы измерения в самом измерении прямого участия не принимает. Однако при градуировке приборов, работающих по методу непосредственной оценки, используются образцовые меры.

Таким образом, метод непосредственной оценки предполагает лишь косвенное использование образцовых мер, поэтому точность измерения этим методом относительно невелика.

Метод сравнения заключается в том, что в процессе измерения измеряемая величина сравнивается с образцовой мерой либо с той же физической величиной, либо косвенно с мерой другой величины.

Чаще всего используется метод сравнения в равновесном режиме, когда разность между измеряемой величиной и мерой или разность между эффектами, вызываемыми измеряемой величиной, и мерой, сводится к нулю. В этом случае метод сравнения обычно называют нулевым методом. Типичным примером нулевого метода является измерение массы на весах. Примером нулевого метода в электрических измерениях являются равновесные мостовые и компенсационные методы, когда о равновесии напряжения в определенном участке судят по отсутствию тока или цепи. Так как отсутствие тока или напряжения может быть отмечено с большой точностью с помощью весьма чувствительных нулевых приборов, то метод сравнения в равновесном режиме обеспечивает значительно бОльшую точность измерения, чем метод непосредственной оценки.

Метод сравнения в неравновесном режиме сводится к получению результата измерения путем измерения разности между измеряемой величиной и заведомо известной величиной (мерой) методом непосредственной оценки. Если эта разность значительно меньше, чем измеряемая величина, то результат измерения может быть получен с большей точностью, чем точность непосредственного измерения величины.

Так, если разность

а = Х – А

в 10 раз меньше, чем измеряемая величина Х (А - известная величина), то погрешность в измерении а вызовет в 10 раз меньшую погрешность измерения Х . Таким образом, в отношении точности измерения метод сравнения в неравновесном режиме занимает промежуточное положение между методом непосредственной оценки и нулевым методом. Метод сравнения в неравновесном режиме также называют дифференциальным методом.

3.2. ОСНОВНЫЕ СТРУКТУРНЫЕ СХЕМЫ ЭЛЕКТРИЧЕСКИХ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

Любой электрический измерительный прибор можно рассматривать как цепочку преобразователей, в которых происходит последовательное преобразование измеряемой величины в показание отсчетного устройства. Поэтому под прибором следует понимать всю совокупность этих преобразователей, независимо от того, объединены они конструктивно в единое целое или выполнены в виде нескольких отдельных блоков.

Структурные схемы современных электрических измерительных приборов весьма разнообразны и иногда являются сложными. Эти структурные схемы можно классифицировать по двум признакам:

1) по роду измеряемой величины (электрическая или неэлектрическая);

2) по используемому методу измерения (рис.1).

Структурные схемы электрических приборов для измерения электрических величин. Простейшей структурной схемой электрического прибора для измерения электрической величины является схема, изображенная на рис.1, а. Этот прибор состоит только из преобразователя измеряемой электрической величины Х э в показание отсчетного устройства измерительного механизма ИМ.

Рис.1. Структурные схемы приборов для измерения электрических величин:

а - только с измерительным механизмом: б - с преобразованием электрической

величины в электрическую; в - по методу сравнения в неравновесном режиме: г - по методу сравнения в равновесном режиме; д - с автоматическим уравновешиванием

Угол поворота измерительного механизма б, являющийся функцией Х э, чаще всего отсчитывается по положению стрелки, укрепленной на оси подвижной части и перемещающейся над шкалой. Шкала измерительного механизма обычно проградуирована непосредственно в единицах измеряемой электрической величины.

Однако в большинстве случаев возможности измерительного механизма не могут удовлетворить всем условиям измерения, например в отношении предела измерения, требуемой мощности, защиты персонала от цепи высокого напряжения и т. д.

В этом случае измеряемая электрическая величина Х э предварительно подвергается преобразованию в преобразователе П ээ (см. рис.1, б) в электрическую величину Y э которая соответствует параметрам измерительного механизма.

К таким преобразователям электрической величины в электрическую относятся: измерительные трансформаторы, шунты, ДН и добавочные резисторы, преобразующие переменный ток в постоянный. Приборы со структурными схемами (см. рис.1, а и б) работают только по методу непосредственной оценки и называются приборами непосредственной оценки.

Структурная схема прибора, работающего по методу сравнения в неравновесном режиме, представлена на рис.1, в. Измеряемая электрическая величина Х э или эффект, ею вызываемый, компенсируется на некотором участке цепи, однородной с Х э величиной Х э.к постоянного значения, получаемой от вспомогательного источника питания U всп через преобразователь, который обычно именуют измерительной цепью ИЦ.

Если величина Х э.к компенсирует измеряемую величину Х э не полностью, то разность ∆Х э = Х э – Х э.к поступает в измерительный прибор непосредственной оценки Г, и отсчет по прибору будет функцией ∆Х э.

Измерительный прибор непосредственной оценки в случаях использования его на выходе приборов сложной структуры будем в дальнейшем называть измерителем.

Если же прибор работает по методу сравнения в равновесном режиме, т. е. по нулевому методу, то его структурную схему можно изобразить согласно рис.1, г. В этом случае величина Х э.к изменяется до тех пор, пока она не уравновесит измеряемую величину Х э , о чем будут свидетельствовать отсутствие тока и показание нулевого указателя НУ.

Если равновесия нет, то разность ∆Х э = Х э – Х э.к будет обнаружена по показанию нулевого указателя. Тогда производят изменение того или иного параметра измерительной цепи до тех пор, пока не наступит равновесие, т. е. равенство Х э = Х э.к .

Отсчетным устройством, градуированным в единицах измеряемой величины, в этих приборах является та часть измерительной цепи, параметр которой регулировался для получения равновесия. В данной схеме уравновешивание производится вручную путем изменения U всп .

В приборе, работающем по схеме, показанной на рис.1, д, уравновешивание производится автоматически. Разность сигналов ∆Х э = Х э - Х э.к, возникающая при отсутствии равновесия, поступает в усилитель Ус, на выходе которого включен реверсивный двигатель РД, механически связанный с движком потенциометра, являющегося частью измерительной цепи. Двигатель перемещает движок потенциометра в таком направлении и до тех пор, пока не наступит равновесие, т. е. равенство Х э = Х э.к . При этом ∆Х , станет равным нулю и реверсивный двигатель остановится.

Одновременно реверсивный двигатель перемещает стрелку по шкале. Таким образом, каждому значению измеряемой величины соответствует определенное положение движка потенциометра и стрелки на шкале. Основными измерительными цепями приборов сравнения являются компенсационные и мостовые цепи.

Рис.2. Структурные схемы электрических приборов для измерения неэлектрических величин:

а - с преобразованием неэлектрической величины в электрическую и с измерительным механизмом: б - с преобразованием неэлектрической величины в электрическую и сравнением в неравновесном режиме: в - с преобразованием неэлектрической величины в электрическую и сравнением в равновесном режиме

Структурные схемы электрических приборов для измерений неэлектрических величин . Эти схемы аналогичны схемам, рассмотренным ранее, и отличаются от них лишь наличием преобразователя для преобразования измеряемой неэлектрической величины в электрическую.

Структурная схема, изображенная на рис.1, б, при измерении неэлектрической величины превращается в схему, представленную на рис.2, а, где измеритель (Г) объединяет преобразователь П ээ и измерительный механизм ИМ. Схема рис.1, в превращается в схему рис.2, б, а схема рис.1, г - в схему рис.2, в.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: