Creativenn - Портал рукоделия

Меркурий - это планета, которая находится ближе всего к Солнцу. На Меркурии практически нет атмосферы, небо там темное, как ночь и всегда ярко светит Солнце. С поверхности планеты Солнце выглядело бы в 3 раза больше по размеру, чем земное. Поэтому перепады температур на Меркурии сильно выражены: от -180 o C по ночам до нестерпимо жарких +430 o C днем (при такой температуре плавится свинец и олово).

У этой планеты очень странный счет времени. На Меркурии вам придется перевести часы таким образом, чтобы день длился примерно 6 земных месяцев, а год - всего 3 (88 земных суток). Хотя планета Меркурий известна с давних времен, тысячи лет человек не имел представления о том, как она выглядит (пока в 1974 году аппарат NASA не передал первые снимки).

Более того, древние астрономы вообще не сразу поняли, что утром и вечером видят одну и ту же звезду. Древние римляне считали Меркурия покровителем торговли, путешественников и воров, а также вестником богов. Неудивительно, что небольшая планета, быстро перемещающаяся по небу вслед за Солнцем, получила его имя.

Меркурий является самой маленькой планетой после Плутона (которого лишили статуса планеты в 2006 году). Диаметр не больше 4880 км и совсем немного превышает по размерам Луну. Такая скромная величина и постоянная близость к Солнцу создают трудности для изучения и наблюдения за данной планетой с Земли.

Меркурий выделяется также своей орбитой. Она у него не круговая, а более вытянутая эллиптическая, если сравнивать с прочими планетами Солнечной системы. Минимальное расстояние до Солнца равно примерно 46 миллионам километров, максимальное - приблизительно на 50% больше (70 миллионов).

Меркурий получает в 9 раз больше солнечного света, чем поверхность Земли. Отсутствие атмосферы, которая могла бы защищать от сжигающих солнечных лучей, приводит к тому, что температура на поверхности поднимается до 430 o C. Это одно из самых жарких мест в Солнеченой системе.

Поверхность планеты Меркурий - олицетворение древности, неподвласной времени. Атмосфера здесь очень разряжена, а воды вообще никогда не было, поэтому эрозионные процессы практически отсутствовали, если не считать последствий падения редких метеоритов или столкновений с кометами.

Галерея

А знаете ли Вы...

Хотя ближайшими по расположению орбит к Земле являются Марс и Венера, Меркурий чаще других является ближайшей к Земле планетой,поскольку другие отдаляются в большей степени, не будучи столь «привязанными» к Солнцу.

На Меркурии не существует таких времён года, как на Земле. Это происходит из-за того, что ось вращения планеты находится под почти прямым углом к плоскости орбиты. Как следствие, рядом с полюсами есть области, до которых солнечные лучи не доходят никогда. Это позволяет предположить, что в этой студёной и тёмной зоне есть ледники.

Меркурий движется быстрее любой другой планеты. Комбинация его движений приводит к тому, что восход Солнца на Меркурии продолжается недолго, после чего Солнце заходит и восходит вновь. На закате эта последовательность повторяется в обратном порядке.

Для своих размеров Меркурий очень тяжел - по-видимому, у него огромное железное ядро. Астрономы полагают, что когда-то планета была крупнее и имела более толстые внешние слои, но миллиарды лет назад столкнулась с протопланетой, и часть мантии и коры разлетелась в космическое пространство.

Здесь на Земле, мы склонны воспринимать время как должное, никогда не задумываясь, что шаг, с которым мы измеряем его, довольно относителен.

Например, то, как мы измеряем наши дни и годы, является фактическим результатом расстояния нашей планеты до Солнца, время, требующееся для совершения оборота вокруг него, и обращения вокруг собственной оси. То же самое верно для других планет в нашей Солнечной системе. В то время как мы – земляне рассчитываем день за 24 часа от рассвета до заката, длина одного дня на другой планете существенно отличается. В некоторых случаях, он очень короткий, в то время как в других, он может длиться более года.

День на Меркурии:

Меркурий является самой близкой планетой к нашему Солнцу, начиная от 46 001 200 км в перигелии (ближайшее расстояние к Солнцу) до 69 816 900 км в афелии (дальше всего). Оборот Меркурия вокруг своей оси занимает 58,646 земных суток, это означает, что день на Меркурии проходит примерно за 58 земных дня от рассвета до заката.

Однако, всего 87,969 земных дня требуется Меркурию, чтобы облететь Солнце один раз (иначе говоря, орбитальный период). Это означает, что год на Меркурии эквивалентен приблизительно 88 земным суткам, что в свою очередь означает, что один год на Меркурии длится 1,5 меркурианских дня. Более того, северные полярные области Меркурия постоянно находятся в тени.

Это происходит из-за его наклона оси – 0,034° (для сравнения у Земли 23,4°), это означает, что на Меркурии нет экстремальных сезонных изменений, когда дни и ночи могут длиться месяцами, в зависимости от сезона. На полюсах Меркурия всегда темно.

День на Венере:

Также известная как «близнец Земли», Венера – вторая самая близкая планета к нашему Солнцу – в пределах от 107 477 000 км в перигелии до 108 939 000 км в афелии. К сожалению, Венера и самая медленная планета, этот факт очевиден, если взглянуть на ее полюса. Принимая во внимание, что планеты в Солнечной системе испытала уплощение на полюсах из-за скорости вращения, Венера не пережила его.

Венера вращается со скоростью всего 6,5 км/ч (по сравнению с рациональной скоростью Земли в 1670 км/ч), которая приводит к сидерическому периоду вращения 243,025 дня. Технически это минус 243,025 дня, так как вращение Венеры ретроградное (т.е вращение в противоположную сторону ее орбитального пути вокруг Солнца).

Тем ни менее Венера все таки обращается вокруг своей оси за 243 земных дня, т.е между ее восходом и закатом проходит очень много дней. Это может казаться странным, пока Вы не знаете, что один Венерианский год длится 224,071 земных суток. Да, Венере необходимо 224 дня чтобы завершить орбитальный период, но более 243 дня, чтобы пройти от рассвета до заката.

Таким образом, один день Венеры немного больше чем Венерианский год! Хорошо, что Венера имеет другие сходства с Землёй, но это явно не суточный цикл!

День на Земле:

Когда мы думаем о дне на Земле, мы склоны думать, что это просто 24 часа. По правде говоря, сидерический период вращения Земли 23 часа 56 минут и 4,1 секунды. Так один день на Земле эквивалентен 0,997 земным суткам. Странно, но опять же, люди предпочитают простоту, когда дело доходит до управления временем, поэтому мы округляем.

В то же время, существуют различия в длине одного дня на планете в зависимости от сезона. Ввиду наклона земной оси, количество получаемого солнечного света в некоторых полушариях будет меняться. Наиболее яркие случаи происходят на полюсах, где день и ночь могут длиться на протяжении нескольких дней и даже месяцев, в зависимости от сезона.

На Северном и Южном полюсах в зимний период, одна ночь может длиться до шести месяцев, известна как «полярная ночь». Летом на полюсах начнется так называемый «полярный день», где солнце не заходит 24 часа. Это на самом деле не так просто, как хотелось бы представить.

День на Марсе:

Во многих отношениях Марс тоже можно назвать «близнецом Земли». Добавим к полярной ледяной шапке сезонные колебания и воду (хотя и в замороженном виде), и день на Марсе довольно близок к земному. Один оборот вокруг своей оси Марс делает за 24 часа
37 минут и 22 секунды. Это означает, что один день на Марсе эквивалентен 1,025957 земным дням.

Сезонные циклы на Марсе, похожи на наши земные, больше чем на любой другой планете, из-за его наклона оси 25,19°. В результате марсианские дни испытывают подобные изменения с Солнцем, которое рано всходит и поздно садится летом, а зимой наоборот.

Однако сезонные изменения длятся на Марсе вдвое дольше, потому что Красная планета находится на большем расстоянии от Солнца. Это приводит к тому, что Марсианский год длится вдвое дольше земного – 686,971 земных дня или 668,5991 марсианских дня или Сола.

День на Юпитере:

Учитывая тот факт, что это самая большая планета в Солнечной системе, можно было бы ожидать, что день на Юпитере будет длиться долго. Но, как оказывается, официально день на Юпитере длится всего 9 часов 55 минут и 30 секунд, что составляет меньше трети продолжительности земного дня. Это связано с тем, что газовый гигант имеет очень большую скорость вращения примерно 45300 км/ч. Такая высокая скорость вращения также одна из причин, по которой на планете такие сильные штормы.

Обратите внимание на использование слова официально. Так как Юпитер не твердое тело, его верхняя атмосфера движется со скоростью отличной от скорости на его экваторе. В основном, вращение полярной атмосферы Юпитера на 5 минут быстрее, чем у экваториальной атмосферы. Из-за этого астрономы используют три системы отсчета.

Система I применяется в широтах с 10°N до 10°S, где его период вращения составляет 9 часов 50 минут и 30 секунд. Система II применяется на всех широтах к северу и к югу от них, там период вращения равен 9 часам 55 минутам и 40,6 секундам. Система III соответствует вращению магнитосферы планеты, и этот период используется IAU и IAG, чтобы определить официальное вращение Юпитера (т.е 9 часов 44 минуты и 30 секунд)

Так что, если Вы теоретически могли бы стоять на облаках газового гиганта, вы бы наблюдали восход Солнца меньше чем раз в 10 часов в любой широте Юпитера. А за один год на Юпитере Солнце восходит примерно 10 476 раз.

День на Сатурне:

Ситуация Сатурна очень подобна Юпитеру. Несмотря на его крупный размер, у планеты есть предположительная скорость вращения 35 500 км/ч. Одно сидерическое вращение Сатурна занимает приблизительно 10 часов 33 минуты, делая один день на Сатурне меньше, чем половина земного дня.

Орбитальный период вращения Сатурна эквивалентен 10 759,22 земным суткам (или 29,45 земным годам), год длится примерно 24 491 сатурианских дней. Однако, как и у Юпитера, атмосфера Сатурна вращается с разной скоростью в зависимости от широты, что требует использование астрономами трех различных систем отсчета.

Система I охватывает экваториальные зоны Южного экваториального полюса и Северного экваториального пояса, и имеет период 10 часов 14 минут. Система II охватывает все остальные широты Сатурна, за исключением северного и южного полюсов, период вращения 10 часов 38 минут и 25,4 секунды. Система III использует радиоизлучение, чтобы измерить внутреннюю скорость вращения Сатурна, которая привела к периоду вращения 10 часов 39 минут 22,4 секунды.

Используя эти различные системы, ученые получили различные данные из Сатурна за эти годы. Например, данные, полученные в течение 1980-х миссиями Voyager 1 и 2, указали, что день на Сатурне составляет 10 часов 45 минут и 45 секунд (± 36 секунд).

В 2007 это было пересмотрено исследователями на кафедре Земли, планетарных и космических наук UCLA, что привело к текущей оценке 10 часов и 33 минуты. Во многом, как и с Юпитером, проблема точных измерений связана с тем, что разные части вращаются с разной скоростью.

День на Уране:

Когда мы подошли к Урану, вопрос о том, сколько длится день, стал сложнее. С одной стороны, планета имеет звёздный период вращения 17 часов 14 минут и 24 секунды, что является эквивалентным 0,71833 земным суткам. Таким образом, можно сказать, что день на Уране длится почти столько же, сколько день на Земле. Это было бы верно, если бы не чрезвычайный наклон оси этого газо-ледяного гиганта.

С наклоном оси 97,77° Уран, по сути, вращается вокруг Солнца на боку. Это означает, что его север или юг обращены прямо к Солнцу в разное время орбитального периода. Когда на одном полюсе лето, там будет непрерывно светить солнце в течение 42 лет. Когда тот же полюс отвернут от Солнца (то есть на Уране зима), там 42 года будет темнота.

Следовательно, можно сказать, что один день на Уране от восхода до заката длится целых 84 года! Другими словами, один день на Уране длится столько же, сколько и один год.

Кроме того, как и с другими гигантами газа/льда, Уран вращается быстрее в определенных широтах. Следовательно, в то время как вращение планеты на экваторе, приблизительно в 60° южной широты, составляет 17 часов и 14,5 минут, видимые особенности атмосферы движутся гораздо быстрее, делая полный оборот всего за 14 часов.

День на Нептуне:

Наконец, у нас есть Нептун. Здесь также измерение одного дня несколько сложнее. Например, сидерический период вращения Нептуна составляет примерно 16 часов 6 минут и 36 секунд (эквивалентно 0,6713 земным дням). Но из-за его газа/ледяного происхождения, полюса планеты сменяют друг друга быстрее, чем экватор.

Принимая во внимание, что скорость вращения магнитного поля планеты 16,1 часов, экваториальная зона вращается примерно 18 часов. Между тем полярные области вращаются в течение 12 часов. Это дифференциальное вращение ярче, чем у любой другой планеты в Солнечной системе, что приводит к сильному широтному сдвигу ветра.

Кроме того, наклон оси планеты 28.32° приводит к сезонным колебаниям, похожим на Земные и Марсианские. Длинный орбитальный период Нептуна означает, что сезон длится в течение 40 земных лет. Но т.к его осевой наклон сопоставим с Земным, изменение продолжительности его дня в течение его длительного года не так экстремально.

Как Вы видите из этого краткого изложения о различных планетах в нашей Солнечной системе, длительность дня полностью зависит от нашей системы отсчета. В дополнение к тому, варьирующийся, в зависимости от рассматриваемой планеты, сезонный цикл и откуда на планете производятся измерения.

Сжатие < 0,0006 Экваториальный радиус 2439,7 км Средний радиус 2439,7 ± 1,0 км Длина окружности 15329,1 км Площадь поверхности 7,48×10 7 км²
0,147 Земных Объём 6,08272×10 10 км³
0,056 Земных Масса 3,3022×10 23 кг
0,055 Земных Средняя плотность 5,427 г/см³
0,984 Земных Ускорение свободного падения на экваторе 3,7 м/с²
0,38 Вторая космическая скорость 4,25 км/с Скорость вращения (на экваторе) 10,892 км/ч Период вращения 58,646 дней (1407,5 часов) Наклон оси вращения 0,01° Прямое восхождение на северном полюсе 18 ч 44 мин 2 с
281.01° Склонение на северном полюсе 61,45° Альбедо 0,119 (Бонд)
0,106 (геом. альбедо) Атмосфера Состав атмосферы 31,7 % калий
24,9 % натрий
9,5 %, А. кислород
7,0 % аргон
5,9 % гелий
5,6 %, М. кислород
5,2 % азот
3,6 % углекислый газ
3,4 % вода
3,2 % водород

Меркурий в натуральном цвете (снимок Mariner 10)

Мерку́рий - самая близкая к Солнцу планета Солнечной системы , обращается вокруг Солнца за 88 земных суток. Меркурий относится к внутренним планетам, так как его орбита проходит ближе к Солнцу, чем основной пояс астероидов. После лишения Плутона в 2006 году статуса планеты Меркурию перешло звание самой маленькой планеты Солнечной системы. Видимая звёздная величина Меркурия колеблется от −2,0 до 5,5, но его нелегко заметить по причине очень маленького углового расстояния от Солнца (максимум 28,3°). В высоких широтах планету никогда нельзя увидеть на тёмном ночном небе: Меркурий всегда скрывается в утренней или вечерней заре. Оптимальным временем для наблюдений планеты являются утренние или вечерние сумерки в периоды его элонгаций (периодов максимального удаления Меркурия от Солнца на небе, наступающих несколько раз в год).

Наблюдать Меркурий удобно в низких широтах и вблизи экватора: это связано с тем, что продолжительность сумерек там наименьшая. В средних широтах найти Меркурий гораздо труднее и только в период наилучших элонгаций, а в высоких широтах невозможно вообще.

О планете пока известно сравнительно немного. Аппарат Маринер-10 , изучавший Меркурий в -1975 годах , успел картографировать лишь 40-45 % поверхности. В январе 2008 года мимо Меркурия пролетела межпланетная станция MESSENGER , которая выйдет на орбиту вокруг планеты в 2011 году.

По своим физическим характеристикам Меркурий напоминает Луну , сильно кратерирован . У планеты нет естественных спутников, но есть очень разреженная атмосфера. Планета обладает крупным железным ядром, являющимся источником магнитного поля по своей совокупности составляющим 0,1 от земного. Ядро Меркурия составляет 70 процентов от всего объёма планеты. Температура на поверхности Меркурия колеблется от 90 до 700 (от −180 до +430 °C). Солнечная сторона нагревается гораздо больше, чем полярные области и обратная сторона планеты.

Несмотря на меньший радиус, Меркурий всё же превосходит по массе такие спутники планет-гигантов , как Ганимед и Титан .

Астрономический символ Меркурия представляет собой стилизованное изображение крылатого шлема бога Меркурия с его кадуцеем .

История и название

Самые древние свидетельства наблюдения Меркурия можно найти ещё в шумерских клинописных текстах, датируемых третьим тысячелетием до н. э. Планета названа в честь бога римского пантеона Меркурия , аналога греческого Гермеса и Вавилонского Набу . Древние греки времён Гесиода называли Меркурий «Στίλβων» (Стилбон, Блестящий). До V века до н. э. греки полагали, что Меркурий, видимый на вечернем и утреннем небе - два различных объекта. В Древней Индии Меркурий именовали Будда (बुध) и Рогинея . В китайском , японском , вьетнамском и корейском языках Меркурий называется Водяная звезда (水星) (в соответствии с представлениями о «Пяти элементах». На иврите название Меркурия звучит как «Коха́в Хама́» (כוכב חמה) («Солнечная планета»).

Движение планеты

Меркурий движется вокруг Солнца по довольно сильно вытянутой эллиптической орбите (эксцентриситет 0,205) на среднем расстоянии 57,91 млн км (0,387 а. е.). В перигелии Меркурий находится в 45,9 млн км от Солнца (0,3 а.е), в афелии - в 69,7 млн км (0,46 а.е) В перигелии Меркурий более чем в полтора раза ближе к Солнцу чем в афелии. Наклон орбиты к плоскости эклиптики равен 7°. На один оборот по орбите Меркурий затрачивает 87,97 суток. Средняя скорость движения планеты по орбите 48 км/с.

В течение долгого времени считалось, что Меркурий постоянно обращён к Солнцу одной и той же стороной, и один оборот вокруг оси занимает у него те же 87,97 суток. Наблюдения деталей на поверхности Меркурия, выполненные на пределе разрешающей способности, казалось, не противоречили этому. Данное заблуждение было связано с тем, что наиболее благоприятные условия для наблюдения Меркурия повторяются через тройной синодический период , то есть 348 земных суток , что примерно равно шестикратному периоду вращения Меркурия (352 суток), поэтому в различное время наблюдался приблизительно один и тот же участок поверхности планеты. С другой стороны, некоторые астрономы полагали, что меркурианские сутки примерно равны земным. Истина раскрылась только в середине 1960-х годов , когда была проведена радиолокация Меркурия.

Оказалось, что меркурианские звёздные сутки равны 58,65 земных суток, то есть 2/3 меркурианского года. Такая соизмеримость периодов вращения и обращения Меркурия является уникальным для Солнечной системы явлением. Оно предположительно объясняется тем, что приливное воздействие Солнца отбирало момент количества движения и тормозило вращение, которое было первоначально более быстрым, до тех пор, пока оба периода не оказались связаны целочисленным отношением. В результате за один меркурианский год Меркурий успевает повернуться вокруг своей оси на полтора оборота. То есть, если в момент прохождения Меркурием перигелия определённая точка его поверхности обращена точно к Солнцу, то при следующем прохождении перигелия к Солнцу будет обращена в точности противоположная точка поверхности, а ещё через один меркурианский год Солнце снова вернётся в зенит над первой точкой. В результате солнечные сутки на Меркурии длятся два меркурианских года или трое меркурианских звёздных суток.

В результате такого движения планеты на ней можно выделить «горячие долготы» - два противоположных меридиана , которые попеременно обращены к Солнцу во время прохождения Меркурием перигелия, и на которых из-за этого бывает особенно горячо даже по меркурианским меркам.

Комбинация движений планеты порождает ещё одно уникальное явление. Скорость вращения планеты вокруг оси - величина практически постоянная, в то время как скорость орбитального движения постоянно изменяется. На участке орбиты вблизи перигелия в течение примерно 8 суток скорость орбитального движения превышает скорость вращательного движения. В результате Солнце на небе Меркурия останавливается, и начинает двигаться в обратном направлении - с запада на восток. Этот эффект иногда называют эффектом Иисуса Навина , по имени главного героя Книги Иисуса Навина из Библии , остановившего движение Солнца (Нав., X, 12-13). Для наблюдателя на долготах, отстоящих на 90° от «горячих долгот», Солнце при этом восходит (или заходит) дважды.

Интересно также, что, хотя ближайшими по расположению орбит к Земле являются Марс и Венера, именно Меркурий является бо́льшую часть времени ближайшей к Земле планетой, чем любая другая (поскольку другие отдаляются в большей степени, не будучи столь «привязанными» к Солнцу).

Физические характеристики

Сравнительные размеры Меркурия, Венеры, Земли и Марса

Меркурий - самая маленькая планета земной группы. Его радиус составляет всего 2439,7 ± 1,0 км, что меньше радиуса спутника Юпитера Ганимеда и спутника Сатурна Титана . Масса планеты равна 3,3×10 23 кг. Средняя плотность Меркурия довольно велика - 5,43 г/см³, что лишь незначительно меньше плотности Земли . Учитывая, что Земля больше по размерам, значение плотности Меркурия указывает на повышенное содержание в его недрах металлов. Ускорение свободного падения на Меркурии равно 3,70 м/с². Вторая космическая скорость - 4,3 км/с.

Кратер Койпер (чуть ниже центра). Снимок КА MESSENGER

Одна из самых заметных деталей поверхности Меркурия - Равнина Жары (лат. Caloris Planitia ). Этот кратер получил своё название, потому что расположен вблизи одной из «горячих долгот». Его поперечник составляет около 1300 км. Вероятно, тело, при ударе которого образовался кратер, имело поперечник не менее 100 км. Удар был настолько сильным, что сейсмические волны, пройдя всю планету и сфокусировавшись в противоположной точке поверхности, привели к образованию здесь своеобразного пересечённого «хаотического» ландшафта.

Атмосфера и физические поля

При пролёте космического аппарата «Маринер-10 » мимо Меркурия было установлено наличие у планеты предельно разреженной атмосферы , давление которой в 5×10 11 раз меньше давления земной атмосферы. В таких условиях атомы чаще сталкиваются с поверхностью планеты, чем друг с другом. Её составляют атомы, захваченные из солнечного ветра или выбитые солнечным ветром с поверхности - гелий , натрий , кислород , калий , аргон , водород . Среднее время жизни определённого атома в атмосфере около 200 суток.

Меркурий обладает магнитным полем, напряжённость которого в 300 раз меньше напряжённости магнитного поля Земли. Магнитное поле Меркурия имеет дипольную структуру и в высшей степени симметрично , а его ось всего на 2 градуса отклоняется от оси вращения планеты, что налагает существенное ограничение на круг теорий, объясняющих его происхождение.

Исследования

Снимок участка поверхности Меркурия, полученный аппаратом MESSENGER

Меркурий - наименее изученная планета земной группы. Только два аппарата были направлены для его исследования. Первым был «Маринер-10 », который в -1975 годах трижды пролетел мимо Меркурия; максимальное сближение составляло 320 км. В результате было получено несколько тысяч снимков, охватывающих примерно 45 % поверхности планеты. Дальнейшие исследования с Земли показали возможность существования водяного льда в полярных кратерах.

Меркурий в искусстве

  • В научно-фантастическом рассказе Бориса Ляпунова «Ближайшие к Солнцу» (1956 г.) советские космонавты впервые высаживаются на Меркурий и Венеру для их изучения.
  • В повести Айзека Азимова «Большое солнце Меркурия» (серия о Лакки Старре) действие происходит на Меркурии.
  • В рассказах Айзека Азимова «Хоровод » (Runaround) и «Ночь, которая умирает» (The Dying Night), написанных соответственно в 1941 и 1956 годах, описывается Меркурий, повёрнутый к Солнцу одной стороной. При этом во втором рассказе на этом факте строится разгадка детективного сюжета.
  • В научно-фантастическом романе Франсиса Карсака «Бегство Земли », наряду с основным сюжетом, описывается научная станция по изучению Солнца, расположенная на Северном полюсе Меркурия. Учёные живут на базе, расположенной в вечной тени глубоких кратеров, а наблюдения ведутся с постоянно освещённых светилом гигантских башен.
  • В научно-фантастической повести Алана Нурса «Через Солнечную сторону» главные герои пересекают сторону Меркурия обращённую к Солнцу. Повесть написана в соответствии с научными взглядами своего времени, когда предполагалось, что Меркурий постоянно обращён к Солнцу одной стороной.
  • В аниме-мультсериале «Сейлор Мун » планету олицетворяет девушка-воительница Сейлор Меркурий, она же Ами Мицуно. Ее атака заключается в силе воды и льда.
  • В научно-фантастической повести Клиффорда Саймака «Однажды на Меркурии», основным полем действия является Меркурий, а энергетическая форма жизни на нем - шары, превосходит человечество на миллионы лет развития, давно пройдя стадию цивилизации.

Примечания

См. также

Литература

  • Бронштэн В. Меркурий - ближайший к Солнцу // Аксёнова М. Д. Энциклопедия для детей. Т. 8. Астрономия - М.: Аванта+, 1997. - С. 512-515. - ISBN 5-89501-008-3
  • Ксанфомалити Л. В. Неизвестный Меркурий // В мире науки . - 2008. - № 2.

Ссылки

  • Сайт о миссии MESSENGER (англ.)
    • Фотографии Меркурия, сделанные Мессенджером (англ.)
  • Раздел о миссии BepiColombo (англ.) на сайте JAXA
  • А. Левин. Железная планета Популярная механика № 7, 2008
  • «Самый близкий» Лента.ру , 5 октября 2009, фотографии Меркурия, сделанные «Мессенджером»
  • «Опубликованы новые снимки Меркурия» Лента.ру, 4 ноября 2009, о сближении в ночь с 29 на 30 сентября 2009 года Мессенджера и Меркурия
  • «Mercury: Facts & Figures» NASA. Сводные физические характеристики планеты.

Как только посланная с Земли автоматическая станция «Маринер-10» добралась наконец до почти неизученной планеты Меркурий и начала ее фотосъемку, стало ясно, что здесь землян ожидают большие сюрпризы, один из которых — необычайное, разительное сходство поверхности Меркурия с Луной. Результаты же дальнейших исследований повергли исследователей в еще большее изумление — оказалось, что у Меркурия гораздо больше общего с Землей, чем с ее извечным спутником.

Иллюзорное родство

С первых переданных «Маринером-10» снимков на ученых действительно смотрела столь знакомая им Луна или, по меньшей мере, ее близнец — на поверхности Меркурия оказалось множество кратеров, которые на первый взгляд выглядели совершенно идентично лунным. И лишь тщательные исследования снимков позволили установить, что всхолмленные участки вокруг лунных кратеров, сложенные из материала, выброшенного при кратерообразующем взрыве, в полтора раза шире меркурианских — при одинаковом размере кратеров. Объясняется это тем, что большая сила тяжести на Меркурии препятствовала более далекому разлету грунта. Оказалось, что на Меркурии, как и на Луне, имеется два главных типа местности — аналоги лунных материков и морей.

Материковые районы — это наиболее древние геологические образования Меркурия, состоящие из испещренных кратерами участков, межкратерных равнин, горных и холмистых образований, а также из линейчатых местностей, покрытых многочисленными узкими грядами.

Аналогами лунных морей считаются гладкие равнины Меркурия, которые моложе по возрасту, чем материки, и несколько темнее материковых образований, но все же не такие темные, как лунные моря. Такие участки на Меркурии сосредоточены в районе равнины Жары — уникальной и крупнейшей на планете кольцевой структуры диаметром 1 300 км. Свое название равнина получила не случайно — через нее проходит меридиан 180° з. д., именно он (либо противоположный ему меридиан 0°) расположен в центре того полушария Меркурия, которое обращено к Солнцу, когда планета находится на минимальном от Светила расстоянии. В это время поверхность планеты сильнее всего нагревается в районах данных меридианов, и в частности в районе равнины Жары. Она окружена гористым кольцом, которое ограничивает огромную круглую впадину, образованную на ранней стадии геологической истории Меркурия. Впоследствии эта впадина, а также соседние с ней районы были затоплены лавами, при застывании которых и возникли гладкие равнины.

На другой стороне планеты, точно напротив впадины, в которой расположена равнина Жары, находится еще одно уникальное образование — холмисто-линейчатая местность. Она состоит из многочисленных крупных холмов (диаметром 5—10 км и высотой до 1—2 км) и пересечена несколькими крупными прямолинейными долинами, явно образованными по линиям разломов коры планеты. Расположение этой местности в районе, противоположном равнине Жары, послужило основанием для гипотезы о том, что холмисто-линейчатый рельеф сформировался за счет фокусировки сейсмической энергии от удара астероида, образовавшего впадину Жары. Эта гипотеза получила косвенное подтверждение, когда вскоре на Луне были обнаружены участки с подобным рельефом, расположенные диаметрально противоположно Морю Дождей и Морю Восточному — двум крупнейшим кольцевым образованиям Луны.

Структурный рисунок коры Меркурия определяется в значительной мере, как и у Луны, крупными ударными кратерами, вокруг которых развиты системы радиально-концентрических разломов, расчленяющих кору Меркурия на блоки. У крупнейших кратеров имеется не один, а два кольцевых концентрических вала, что также напоминает лунную структуру. На заснятой половине планеты выявлено 36 таких кратеров.

Несмотря на общее сходство меркурианского и лунного ландшафтов, на Меркурии обнаружены совершенно уникальные геологические структуры, не наблюдавшиеся до этого ни на одном из планетных тел. Они были названы лопастевидными уступами, поскольку для их очертаний на карте типичны округлые выступы — «лопасти» поперечником до нескольких десятков километров. Высота уступов от 0,5 до 3 км, по протяженности же крупнейшие из них достигают 500 км. Уступы эти довольно крутые, но в отличие от лунных тектонических уступов, имеющих резко выраженный перегиб склона вниз, меркурианские лопастевидные имеют в своей верхней части сглаженную линию перегиба поверхности.

Расположены эти уступы в древних материковых районах планеты. Все их особенности дают основание считать их поверхностным выражением сжатия верхних слоев коры планеты.

Расчеты же величины сжатия, выполненные по измеренным параметрам всех уступов на заснятой половине Меркурия, указывают на сокращение площади коры на 100 тыс. км 2 , что соответствует уменьшению радиуса планеты на 1—2 км. Такое его уменьшение могло быть вызвано остыванием и затвердеванием недр планеты, в частности ее ядра, продолжавшимися и после того, как поверхность уже стала твердой.

Расчеты показали, что железное ядро должно иметь массу 0,6—0,7 массы Меркурия (для Земли эта же величина равна 0,36). Если же все железо сконцентрировано в меркурианском ядре, то его радиус составит 3/4 радиуса планеты. Таким образом, если радиус ядра равен примерно 1 800 км, то получается, что внутри Меркурия — гигантский железный шар величиной с Луну. На долю двух внешних каменных оболочек — мантии и коры — приходится лишь около 800 км. Такое внутреннее строение очень похоже на строение Земли, хотя размеры оболочек Меркурия определены лишь в самых общих чертах: неизвестна даже толщина коры, предполагается, что она может составлять 50—100 км, тогда на мантию остается слой толщиной около 700 км. На Земле же мантия занимает преобладающую часть радиуса.

Детали рельефа. Гигантский уступ Дискавери протяженностью 350 км пересекает два кратера диаметром 35 и 55 км. Максимальная высота уступа 3 км. Он образовался при надвигании верхних слоев коры Меркурия слева направо. Это произошло из-за коробления коры планеты при сжатии металлического ядра, вызванном его остыванием. Уступ получил имя корабля Джеймса Кука.

Фотокарта крупнейшей кольцевой структуры на Меркурии — равнины Жары, окруженной горами Жары. Диаметр этой структуры 1300 км. Видна лишь восточная ее часть, а центральная и западная части, не освещенные на этом снимке, до сих пор не изучены. Район меридиана 180° з. д. — это наиболее сильно нагреваемая Солнцем область Меркурия, что отражено в названиях равнины и гор. Два основных типа местности на Меркурии — древние сильно кратерированные районы (темно-желтые на карте) и более молодые гладкие равнины (коричневые на карте) — отражают два главных периода геологической истории планеты — период массового падения крупных метеоритов и последовавший за ним период излияния высокоподвижных, предположительно базальтовых лав.

Гигантские кратеры диаметром 130 и 200 км с дополнительным валом на дне, концентричным основному кольцевому валу.

Извилистый уступ Санта-Мария, названный по имени корабля Христофора Колумба, пересекает древние кратеры и более позднюю равнинную местность.

Холмисто-линейчатая местность — уникальный по своему строению участок поверхности Меркурия. Здесь почти нет малых кратеров, но много скоплений невысоких горок, пересеченных прямолинейными тектоническими разломами.

Имена на карте. Названия деталям рельефа Меркурия, выявленным на снимках «Маринера-10», были даны Международным астрономическим союзом. Кратерам присвоены имена деятелей мировой культуры — известных писателей, поэтов, художников, скульпторов, композиторов. Для обозначения равнин (кроме равнины Жары) были использованы названия планеты Меркурий на разных языках. Протяженные линейные впадины — тектонические долины — получили имена радиообсерваторий, внесших вклад в изучение планет, а две гряды — крупные линейные возвышенности, были названы в честь астрономов Скиапарелли и Антониади, сделавших много визуальных наблюдений. Наиболее же крупные лопастевидные уступы получили имена морских кораблей, на которых совершались самые значимые плавания в истории человечества.

Железное сердце

Сюрпризом оказались и другие данные, полученные «Маринером-10» и показавшие, что Меркурий обладает крайне слабым магнитным полем, величина которого — лишь около 1% от земного. Это незначительное на первый взгляд обстоятельство для ученых было крайне важным, поскольку из всех планетных тел земной группы глобальной магнитосферой обладают лишь Земля и Меркурий. И единственным наиболее правдоподобным объяснением природы меркурианского магнитного поля может быть наличие в недрах планеты частично расплавленного металлического ядра, опять же подобного земному. Судя по всему, у Меркурия это ядро очень большое, на что указывает высокая плотность планеты (5,4 г/см 3), позволяющая предполагать, что Меркурий содержит много железа, единственного достаточно широко распространенного в природе тяжелого элемента.

На сегодняшний момент выдвинуто несколько возможных объяснений высокой плотности Меркурия при его сравнительно небольшом диаметре. Согласно современной теории образования планет считается, что в допланетном пылевом облаке температура прилегавшей к Солнцу области была более высокой, чем в окраинных его частях, поэтому легкие (так называемые летучие) химические элементы выносились в удаленные, более холодные части облака. В результате этого в околосолнечной области (там, где сейчас расположен Меркурий) создавалось преобладание более тяжелых элементов, самым распространенным из которых и является железо.

Другие объяснения связывают высокую плотность Меркурия с химическим восстановлением окислов (оксидов) легких элементов до их более тяжелой, металлической, формы под действием очень сильной солнечной радиации, либо с постепенным испарением и улетучиванием в космос внешнего слоя первоначальной коры планеты под воздействием солнечного нагрева, либо же с тем, что значительная часть «каменной» оболочки Меркурия была утрачена в результате взрывов и выбросов вещества в космическое пространство при соударениях с небесными телами меньших размеров, например астероидов.

По величине средней плотности Меркурий стоит особняком от всех остальных планет земной группы, в том числе и от Луны. Его средняя плотность (5,4 г/см 3) уступает лишь плотности Земли (5,5 г/см 3), а если иметь в виду, что на земную плотность влияет более сильное сжатие вещества из-за большего размера нашей планеты, то получается, что при равных размерах планет плотность меркурианского вещества была бы наибольшей, превышая земную на 30%.

Горячий лед

Судя по имеющимся данным, поверхность Меркурия, получающая огромное количество солнечной энергии, представляет собой настоящее пекло. Судите сами — средняя температура в момент меркурианского полдня составляет около +350°С. Причем, когда Меркурий находится на минимальном расстоянии от Солнца, она поднимается до +430°С, при максимальном же удалении опускается всего до +280°С. Впрочем, установлено также и то, что сразу после захода Солнца температура в приэкваториальной области резко снижается до —100°С, а к полуночи вообще доходит до —170°С, но после рассвета поверхность быстро прогревается до +230°С. Проведенные с Земли измерения в радиодиапазоне показали, что внутри грунта на небольшой глубине температура вообще не зависит от времени суток. Что говорит о высоких теплоизолирующих свойствах поверхностного слоя, но поскольку световой день длится на Меркурии 88 земных суток, то за это время хорошо прогреться, пусть и на небольшую глубину, успевают все участки поверхности.

Казалось бы, говорить о возможности существования в таких условиях на Меркурии льда — по меньшей мере абсурдно. Но вот в 1992 году, во время радиолокационных наблюдений с Земли вблизи северного и южного полюсов планеты, были впервые обнаружены участки, очень сильно отражающие радиоволны. Именно эти данные и были истолкованы как свидетельства наличия льда в приповерхностном меркурианском слое. Радиолокацией, выполненной из расположенной на острове Пуэрто-Рико радиообсерватории «Аресибо», а также из Центра дальней космической связи NASA в Голдстоуне (Калифорния) было выявлено около 20 округлых пятен поперечником в несколько десятков километров, имеющих повышенное радиоотражение. Предположительно это кратеры, в которые из-за их близкого расположения к полюсам планеты солнечные лучи попадают лишь вскользь или не попадают вовсе. Такие кратеры, называемые постоянно затененными, имеются и на Луне, в них при измерениях со спутников было выявлено наличие некоторого количества водного льда. Расчеты показали, что во впадинах постоянно затененных кратеров у полюсов Меркурия может быть достаточно холодно (–175°С), чтобы там в течение длительного времени мог существовать лед. Даже на равнинных участках близ полюсов расчетная дневная температура не превышает –105°С. Непосредственных же измерений температуры поверхности полярных районов планеты до сих пор не имеется.

Несмотря на наблюдения и расчеты, существование льда на поверхности Меркурия или на небольшой глубине под ней до сих пор однозначного доказательства не получило, поскольку повышенным радиоотражением обладают и каменные горные породы, содержащие соединения металлов с серой, и возможные на поверхности планеты металлические конденсаты, например ионы натрия, осевшие на нее в результате постоянной «бомбардировки» Меркурия частицами солнечного ветра.

Но тут возникает вопрос: почему распространение участков, сильно отражающих радиосигналы, четко приурочено именно к полярным областям Меркурия? Может быть, остальная территория защищена от солнечного ветра магнитным полем планеты? Надежды на прояснение загадки о льдах в царстве жары связаны лишь с полетом к Меркурию новых автоматических космических станций, оборудованных измерительными приборами, позволяющими определить химический состав поверхности планеты. Две такие станции — «Мессенджер» и «Бепи-Коломбо» — уже готовятся к полету.

Заблуждение Скиапарелли. Астрономы называют Меркурий трудным для наблюдений объектом, поскольку на нашем небосводе он удаляется от Солнца не больше чем на 28° и наблюдать его приходится всегда низко над горизонтом, сквозь атмосферную дымку на фоне утренней зари (осенью) или по вечерам сразу после заката Солнца (весной). В 1880-х годах итальянский астроном Джованни Скиапарелли на основании своих наблюдений Меркурия сделал вывод, что эта планета делает один оборот вокруг своей оси точно за такое же время, как и один оборот по орбите вокруг Солнца, то есть «сутки» на нем равны «году». Следовательно, к Солнцу всегда обращено одно и то же полушарие, поверхность которого постоянно раскалена, а вот на противоположной стороне планеты царят вечный мрак и холод. А так как авторитет Скиапарелли как ученого был велик, а условия наблюдения Меркурия — затруднительны, почти сто лет это положение сомнению не подвергалось. И лишь в 1965 году радиолокационными наблюдениями с помощью крупнейшего радиотелескопа «Аресибо» американские ученые Г. Петтенгилл и Р. Дайс впервые надежно определили, что Меркурий делает один оборот вокруг оси примерно за 59 земных суток. Это стало крупнейшим открытием в планетной астрономии нашего времени, которое буквально потрясло основы представлений о Меркурии. А вслед за ним последовало еще одно открытие — профессор Падуанского университета Д. Коломбо обратил внимание, что время оборота Меркурия вокруг оси соответствует 2/3 времени его обращения вокруг Солнца. Это было расценено как наличие резонанса между этими двумя вращениями, который возник из-за гравитационного воздействия Солнца на Меркурий. В 1974 году американская автоматическая станция «Маринер-10», впервые пролетев около планеты, подтвердила, что день на Меркурии длится больше года. Сегодня, несмотря на развитие космических и радиолокационных исследований планет, наблюдения Меркурия традиционными методами оптической астрономии продолжаются, хотя и с применением новых инструментов и компьютерных способов обработки данных. Недавно в Абастуманской астрофизической обсерватории (Грузия) совместно с Институтом космических исследований РАН было выполнено изучение фотометрических характеристик поверхности Меркурия, давшее новые сведения о микроструктуре верхнего слоя грунта.

В окрестностях солнца. Ближайшая к Солнцу планета Меркурий движется по сильно вытянутой орбите, то приближаясь к Светилу на расстояние 46 млн. км, то удаляясь от него на 70 млн. км. Сильно вытянутая орбита резко отличается от почти круговых орбит остальных планет земной группы — Венеры, Земли и Марса. Ось вращения Меркурия перпендикулярна плоскости его орбиты. Один оборот по орбите вокруг Солнца (меркурианский год) длится 88, а один оборот вокруг оси — 58,65 земных суток. Планета вращается вокруг своей оси в прямом направлении, то есть в том же, в каком движется по орбите. В результате сложения этих двух движений продолжительность солнечных суток на Меркурии составляет 176 земных. Среди девяти планет Солнечной системы Меркурий, чей диаметр составляет 4 880 км, на предпоследнем месте по размеру, меньше него — лишь Плутон. Сила тяжести на Меркурии составляет 0,4 от земной, а площадь поверхности (75 млн. км 2) — в два раза превышает лунную.

Грядущие вестники

Старт второй в истории автоматической станции, направляемой к Меркурию, — «Мессенджер» — NASA планирует осуществить уже в 2004 году. После запуска станция должна дважды (в 2004 и 2006 годах) пролететь вблизи Венеры, гравитационное поле которой искривит траекторию так, чтобы станция точно вышла к Меркурию. Исследования намечено провести в две фазы: сначала ознакомительные — с пролетной траектории при двух встречах с планетой (в 2007 и 2008 годах), а затем (в 2009—2010 годах) детальные — с орбиты искусственного спутника Меркурия, работа на которой будет происходить в течение одного земного года.

При пролете около Меркурия в 2007 году должна быть заснята восточная половина неизученного полушария планеты, а год спустя — западная. Таким образом, впервые будет получена глобальная фотокарта этой планеты, и уже одного этого было бы достаточно, чтобы счесть данный полет вполне успешным, однако программа работы «Мессенджера» гораздо более обширна. Во время двух запланированных пролетов гравитационное поле планеты будет «притормаживать» станцию, чтобы при следующей, третьей, встрече она смогла бы перейти на орбиту искусственного спутника Меркурия с минимальным удалением от планеты на 200 км и максимальным — на 15 200 км. Орбита будет расположена под углом 80° к экватору планеты. Низкий участок разместится над ее северным полушарием, что позволит подробно изучить как крупнейшую на планете равнину Жары, так и предполагаемые «холодные ловушки» в кратерах близ Северного полюса, в которые не попадает свет Солнца и где предполагается наличие льда.

Во время работы станции на орбите вокруг планеты планируется за первые 6 месяцев выполнить подробную съемку всей ее поверхности в различных диапазонах спектра, включая цветные изображения местности, определение химического и минералогического составов пород поверхности, измерение содержания летучих элементов в приповерхностном слое для поисков мест концентрации льда.

В последующие 6 месяцев будут выполняться очень детальные исследования отдельных объектов местности, наиболее важных для понимания истории геологического развития планеты. Такие объекты будут отобраны по результатам глобальной съемки, выполненной на первом этапе. Также лазерным высотомером будут проводиться измерения высот деталей поверхности для получения обзорных топографических карт. Магнитометр, расположенный вдалеке от станции на шесте длиной 3,6 м (чтобы избежать помех от приборов), произведет определение характеристик магнитного поля планеты и возможных магнитных аномалий на самом Меркурии.

Принять эстафету у «Мессенджера» и начать в 2012 году изучение Меркурия с помощью сразу трех станций призван совместный проект Европейского космического агентства (ESA) и Японского агентства аэрокосмических исследований (JAXA) — «БепиКоломбо». Здесь изыскательские работы планируется вести с помощью одновременно двух искусственных спутников, а также посадочного аппарата. В планируемом полете плоскости орбит обоих спутников пройдут через полюса планеты, что позволит охватить наблюдениями всю поверхность Меркурия.

Основной спутник в виде невысокой призмы массой 360 кг будет двигаться по слабовытянутой орбите, то приближаясь к планете до 400 км, то удаляясь от нее на 1 500 км. На этом спутнике будет размещен целый комплекс приборов: 2 телекамеры для обзорной и детальной съемки поверхности, 4 спектрометра для изучения хи-диапазонах (инфракрасном, ультрафиолетовом, гамма, рентгеновском), а также нейтронный спектрометр, предназначенный для обнаружения воды и льда. Кроме того, основной спутник будет снабжен лазерным высотомером, с помощью которого должна быть впервые составлена карта высот поверхности всей планеты, а также телескопом — для поиска потенциально опасных для столкновения с Землей астероидов, которые заходят во внутренние районы Солнечной системы, пересекая земную орбиту.

Перегрев Солнцем, от которого к Меркурию приходит в 11 раз больше тепла, чем к Земле, может привести к выходу из строя электроники, работающей при комнатной температуре, одна половина станции «Мессенджер» будет укрыта полуцилиндрическим теплоизолирующим экраном из специальной керамической ткани Nextel.

Вспомогательный спутник в виде плоского цилиндра массой 165 кг, называемый магнитосферным, планируется вывести на сильно вытянутую орбиту с минимальным расстоянием от Меркурия 400 км и максимальным — 12 000 км. Работая в паре с основным спутником, он будет производить измерения параметров удаленных областей магнитного поля планеты, в то время как основной займется наблюдением магнитосферы вблизи Меркурия. Такие совместные измерения позволят построить объемную картину магнитосферы и ее изменений во времени при взаимодействии с меняющими свою интенсивность потоками заряженных частиц солнечного ветра. На вспомогательном спутнике так-же будет установлена телекамера для съемки поверхности Меркурия. Магнитосферный спутник создается в Японии, а основной разрабатывается учеными европейских стран.

В проектировании посадочного аппарата участвуют Научно-исследовательский центр имени Г.Н. Бабакина при НПО имени С.А. Лавочкина, а также фирмы Германии и Франции. Запуск «БепиКоломбо» планируется произвести в 2009—2010 годах. В связи с этим рассматриваются два варианта: либо единый запуск всех трех аппаратов ракетой «Ариан-5» с космодрома Куру во Французской Гвиане (Южная Америка), либо — два отдельных пуска с космодрома Байконур в Казахстане российскими ракетами «Союз—Фрегат» (на одной—основной спутник, на другой — посадочный аппаратимагнитосферный спутник). Предполагается, что перелет к Меркурию будет длиться 2—3 года, за которые аппарат должен пролететь сравнительно близко от Луны и Венеры, гравитационное воздействие которых «скорректирует» его траекторию, придав направление и скорость, необходимые для достижения ближайших окрестностей Меркурия в 2012 году.

Как уже было сказано, исследования со спутников планируется проводить в течение одного земного года. Что же касается посадочного блока, то он сможет проработать очень недолгое время — сильный нагрев, которому он должен подвергнуться на поверхности планеты, неизбежно приведет к выходу из строя его радиоэлектронных устройств. Во время межпланетного перелета небольшой посадочный аппарат дискообразной формы (диаметр 90 см, масса 44 кг) будет находиться «на спине» у магнитосферного спутника. После их разделения вблизи Меркурия посадочный аппарат будет выведен на орбиту искусственного спутника с высотой 10 км над поверхностью планеты.

Другой маневр переведет его на траекторию снижения. Когда до поверхности Меркурия останется 120 м, скорость посадочного блока должна уменьшиться до нуля. В этот момент он начнет свободное падение на планету, в ходе которого произойдет наполнение сжатым воздухом пластиковых мешков — они укроют аппарат со всех сторон и смягчат его удар о поверхность Меркурия, которой он коснется со скоростью 30 м/с (108 км/ч).

Чтобы уменьшить негативное воздействие солнечного тепла и радиации, посадку на Меркурий планируется произвести в полярной области на ночной стороне, невдалеке от линии раздела темной и освещенной частей планеты, с таким расчетом, чтобы примерно через 7 земных дней аппарат «увидел» рассвет и поднимающееся над горизонтом Солнце. Для того чтобы бортовая телекамера смогла получить изображения местности, планируется снабдить посадочный блок своего рода прожектором. С помощью двух спектрометров будет определено, какие химические элементы и минералы содержатся в точке посадки. А небольшой зонд, прозванный «кротом», проникнет вглубь, чтобы провести измерения механических и тепловых характеристик грунта. Сейсмометром попытаются зарегистрировать возможные «меркуретрясения», которые, кстати, весьма вероятны.

Также планируется, что с посадочного аппарата на поверхность сойдет миниатюрный планетоход — для исследования свойств грунта на прилегающей территории. Несмотря на грандиозность планов, детальное изучение Меркурия только начинается. И то, что земляне намерены потратить на это множество сил и средств, отнюдь не случайно. Меркурий — единственное небесное тело, внутреннее строение которого столь сходно с земным, поэтому для сравнительной планетологии интерес он представляет исключительный. Возможно, исследования этой далекой планеты позволят пролить свет на загадки, таящиеся в биографии нашей Земли.

Миссия «БепиКоломбо» над поверхностью Меркурия: на переднем плане — основной орбитальный спутник, в отдалении — магнитосферный модуль.


Одинокий гость.
«Маринер-10» — единственный космический аппарат, исследовавший Меркурий. Сведения, полученные им 30 лет назад, до сих пор остаются наилучшим источником информации об этой планете. Полет «Маринера-10» считается исключительно успешным — вместо намеченного по плану одного раза он провел исследования планеты трижды. На сведениях, полученных им в ходе полета, основаны все современные карты Меркурия и подавляющее большинство данных о его физических характеристиках. Сообщив о Меркурии всю возможную инфрмацию, «Маринер-10» исчерпал ресурс «жизнедеятельности», но и до сих пор продолжает безмолвно двигаться по прежней траектории, встречаясь с Меркурием каждые 176 земных дней — точно через два оборота планеты вокруг Солнца и через три оборота ее вокруг своей оси. Из-за такой синхронности движения он всегда пролетает над одним и тем же районом планеты, освещаемым Солнцем, точно под тем же углом, как и во время самого первого своего пролета.

Солнечные танцы. Самым впечатляющим зрелищем на меркурианском небосводе является Солнце. Там оно выглядит в 2—3 раза большим, чем на земном небе. Особенности сочетания скоростей вращения планеты вокруг своей оси и вокруг Солнца, а так-же сильная вытянутость ее орбиты приводят к тому, что видимое перемещение Солнца по черному меркурианскому небу совсем не такое, как на Земле. При этом путь Солнца выглядит неодинаково на разных долготах планеты. Так, в районах меридианов 0 и 180° з. д. рано утром в восточной части неба над горизонтом воображаемый наблюдатель мог бы увидеть «маленькое» (но в 2 раза большее, чем на небе Земли), очень быстро поднимающееся над горизонтом Светило, скорость которого по мере приближения к зениту постепенно замедляется, а само оно становится ярче и жарче, увеличиваясь в размерах в 1,5 раза — это Меркурий подходит по своей сильно вытянутой орбите ближе к Солнцу. Едва пройдя точку зенита, Солнце замирает, немного пятится назад в течение 2—3 земных суток, еще раз замирает, а затем начинает уходить вниз со все возрастающей скоростью и заметно уменьшаясь в размерах — это Меркурий отдаляется от Солнца, уходя в вытянутую часть своей орбиты — и с большой скоростью скрывается за горизонтом на западе.

Совсем по-иному выглядит дневной ход Солнца вблизи 90 и 270° з. д. Здесь Светило выписывает совсем удивительные пируэты — за сутки происходит по три восхода и по три заката. Утром из-за горизонта на востоке очень медленно появляется яркий светящийся диск громадного размера (в 3 раза больше, чем на земном небосводе), он немного поднимается над горизонтом, останавливается, а затем идет вниз и ненадолго скрывается за горизонтом.

Вскоре следует повторный восход, после которого Солнце начинает медленно ползти по небу вверх, постепенно ускоряя свой ход и при этом быстро уменьшаясь в размерах и тускнея. Точку зенит это «маленькое» Солнце пролетает на большой скорости, а потом замедляет свой бег, растет в размерах и медленно скрывается за вечерним горизонтом. Вскоре после первого заката Солнце поднимается вновь на небольшую высоту, ненадолго застывает на месте, а затем снова опускается к горизонту и заходит окончательно.

Такие «зигзаги» солнечного хода происходят оттого, что на коротком отрезке орбиты при прохождении перигелия (минимального расстояния от Солнца) угловая скорость движения Меркурия по орбите вокруг Солнца становится больше, чем угловая скорость его вращения вокруг оси, что приводит к перемещению Солнца на небосводе планеты в течение короткого промежутка времени (около двух земных суток) вспять его обычному ходу. А вот звезды на небе Меркурия перемещаются втрое быстрее, чем Солнце. Звезда, появившаяся одновременно с Солнцем над утренним горизонтом, зайдет на западе еще до полудня, то есть раньше, чем Солнце доберется до зенита, и успеет еще раз взойти на востоке, пока Солнце не село.

Небо над Меркурием черно и днем, и ночью, а все потому, что там практически нет атмосферы. Меркурий окружен лишь так называемой экзосферой — пространством настолько разреженным, что составляющие его нейтральные атомы никогда не сталкиваются. В нем согласно наблюдениям в телескоп с Земли, а также в процессе пролетов около планеты станции «Маринер-10» были обнаружены атомы гелия (они преобладают), водорода, кислорода, неона, натрия и калия. Составляющие экзосферу атомы «выбиты» из поверхности Меркурия фотонами и ионами, частицами, прилетающими от Солнца, а также микрометеоритами. Отсутствие атмосферы приводит к тому, что на Меркурии нет и звуков, поскольку нет упругой среды — воздуха, передающего звуковые волны.

Георгий Бурба, кандидат географических наук

Здесь, на Земле, люди воспринимают время как что-то само собой разумеющееся. Но на самом деле ведь в основе всего лежит крайне сложная система. Например, то, как люди исчисляют дни и годы, вытекает из того, каково расстояние между планетой и Солнцем, из времени, которое тратится Землей на совершение полного оборота вокруг газового светила, а также времени, которое тратится на совершение движения на 360 градусов вокруг своей оси. Тот же самый метод применим и для остальных планет, находящихся в Солнечной системе. Земляне привыкли считать, что в сутках содержится 24 часа, однако на других планетах продолжительность суток намного отличается. В некоторых случаях они короче, в других - длиннее, порой значительно. Солнечная система полна сюрпризов, и пришло время ее изучить.

Меркурий

Меркурий - это планета, которая располагается ближе всего к Солнцу. Расстояние это может составлять от 46 до 70 миллионов километров. Учитывая тот факт, что Меркурию требуется около 58 земных дней, чтобы обернуться на 360 градусов, стоит понимать, что на этой планете вы сможете увидеть рассвет только раз в 58 дней. Но для того чтобы описать круг около главного светила системы, Меркурию требуется всего 88 земных дней. Это означает, что год на этой планете длится примерно полтора дня.

Венера

Венера, известная также как «близнец Земли», является второй от Солнца планетой. Расстояние от нее до Солнца составляет от 107 до 108 миллионов километров. К сожалению, Венера также является самой медленно вращающейся планетой, что можно заметить при взгляде на ее полюса. В то время как абсолютно все планеты, находящиеся в Солнечной системе, испытали сплющивание на полюсах из-за скорости их вращения, у Венеры не наблюдается его признаков. В итоге Венере требуется около 243 земных дней, чтобы один раз обойти главное светило системы. Это может показаться странным, но планете требуется 224 дня, чтобы совершить полное вращение вокруг своей оси, что означает лишь одно: день на этой планете длится дольше, чем год!

Земля

Когда речь идет о сутках на Земле, люди обычно представляют их как 24 часа, в то время как на самом деле период вращения составляет всего 23 часа и 56 минут. Таким образом, одни сутки на Земле равны где-то 0.9 земным дням. Выглядит странно, однако люди всегда предпочитают простоту и удобство, а не точность. Однако все не так просто, и длина дня может изменяться - иногда она даже на самом деле равна 24 часам.

Марс

Во многих смыслах Марс тоже может быть назван близнецом Земли. Кроме того, что у него имеются снежные полюса, смена сезонов и даже вода (пусть и в замороженном состоянии), день на планете является крайне близким по продолжительности к дню на Земле. Оборот вокруг своей оси занимает у Марса 24 часа, 37 минут и 22 секунды. Таким образом, здесь день чуть-чуть длиннее, чем на Земле. Как уже было сказано ранее, сезонные циклы здесь также очень похожи на земные, поэтому и варианты продолжительности дня будут схожими.

Юпитер

Учитывая тот факт, что Юпитер является крупнейшей планетой Солнечной системы, можно было бы ожидать, что день на нем окажется невероятно продолжительным. Но на самом деле все обстоит совершенно иначе: сутки на Юпитере длятся всего 9 часов, 55 минут и 30 секунд, то есть один день на этой планете составляет примерно треть земного дня. Это происходит из-за того, что данный газовый гигант имеет очень высокую скорость вращения вокруг своей оси. Именно из-за этого на планете также наблюдаются очень сильные ураганы.

Сатурн

Ситуация на Сатурне очень похожа на ту, которая наблюдается на Юпитере. Несмотря на большой размер, планета имеет маленькую скорость вращения, поэтому на один период вращения на 360 градусов у Сатурна уходит всего 10 часов и 33 минуты. Это значит, что один день на Сатурне по продолжительности равен менее чем половине земного дня. И, опять же, высокая скорость вращения приводит к невероятным ураганам и даже постоянному вихревому шторму на южном полюсе.

Уран

Когда речь заходит об Уране, вопрос подсчета продолжительности дня становится затруднительным. С одной стороны, время вращения планеты вокруг своей оси составляет 17 часов, 14 минут и 24 секунды, что немногим меньше стандартного земного дня. И это заявление было бы верным, если бы не сильнейший осевой наклон Урана. Угол этого наклона составляет более 90 градусов. Это означает, что планета движется мимо главной звезды системы фактически на боку. Более того, при таком раскладе один полюс очень долгое время смотрит в сторону Солнца - целых 42 года. В итоге можно сказать, что сутки на Уране длятся 84 года!

Нептун

Последним в списке идет Нептун, и здесь также возникает проблема измерения продолжительности суток. Полное вращение вокруг своей оси планета совершает за 16 часов, 6 минут и 36 секунд. Однако и здесь имеется загвоздка - учитывая тот факт, что планета является газово-ледяным гигантом, ее полюса вращаются быстрее, чем экватор. Выше было обозначено время вращения магнитного поля планеты - ее экватор оборачивается за 18 часов, в то время как полюса завершают круговое вращение за 12 часов.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: