Creativenn - Портал рукоделия

Элементы, входящие в VII группу периодической системы, делятся на 2 подгруппы: главную — подгруппу галогенов — и побочную — подгруппу марганца. В эту же группу помещают и водород, хотя его атом имеет на внешнем валентном, уровне единственный электрон и его следовало бы поместить в I группу.

Однако водород имеет очень мало общего как с элементами основой подгруппы — щелочными металлами, так и с элементами побочной подгруппы — медью, серебром и золотом. В то же время он, как и галогены, присоединяя в реакциях с активными металлами электрон, образует гидриды, имеющие некоторое сходство с галогенидами.

К подгруппе галогенов относятся фтор, хлор, бром, иод и астат. Первые 4 элемента встречаются в природе, последний получен искусственно и поэтому изучен значительно меньше остальных галогенов. Слово "галоген" означает солеобразующий. Это название элементы подгруппы получили благодаря легкости, с которой они реагируют со многими металлами, образуя соли.

Все галогены имеют структуру внешней электронной оболочки s 2 p 5 . Поэтому они легко принимают электрон, образуя устойчивую благородногазовую электронную оболочку (s 2 р 6). Наименьший радиус атома в подгруппе — у фтора, у остальных он увеличивается в ряду F < Cl < Br < I < Аt и составляет соответственно 133; 181; 196; 220 и 270 нм. В таком же порядке уменьшается сродство атомов элементов к электрону.

Галогены — очень активные элементы. Они могут отнимать электроны не только у атомов, которые их легко отдают, но и у ионов и даже вытеснять другие галогены, менее активные, из их соединений. Например фтор вытесняет хлор из хлоридов, бром из бромидов, а иод из иодидов.

Из всех галогенов только фтор, находящийся во II периоде, не имеет незаполненного d-уровня. По этой причине он не может иметь больше 1-го неспаренного электрона и проявляет валентность только -1. В атомах других галогенов d-уровень не заполнен, что дает им возможность иметь различное количество неспаренных электронов и проявлять валентность -1, +1, +3, +5 и +7, наблюдающуюся в кислородных соединениях хлора, брома и иода.

К подгруппе марганца принадлежат марганец, технеций и рений. В отличии от галогенов элементы подгруппы марганца имеют на внешнем электронном уровне всего 2 электрона и поэтому не проявляют способности присоединять электроны, образуя отрицательно заряженные ионы.

Марганец распространен в природе и широко используется в промышленности.

Технеций радиоактивен, в природе не встречаемся, а получен искусственно (впервые — Э. Сегре и К. Перрье, 1937 г.) Этот элемент образуется вследствие радиоактивного распада урана. Рений относится к числу рассеянных элементов. Он не образует самостоятельных минералов, а встречается в качестве спутника некоторых минералов, особенно молибденовых.

Он был открыт В. и И. Ноддак в 1925 г. Сплавы, имеющие небольшие добавки рения, обладают повышенной устойчивостью против коррозии. Добавка рения сплавам увеличивает их механическую прочность.

Это свойство рения позволяет применять его вместо благородного металла иридия. Платино-платинорениевые термопары работают лучше платино-платиноиридиевых, но их нельзя использовать при очень высоких температурах, так как образуется летучее соединение Re 2 O 7 .

Подгруппа галогенов

Лекция №3

План лекции

1. Общая характеристика подгруппы

2. Нахождение в природе. История получения фтора

3. Методы получения фтора

4. Физические и химические свойства фтора

5. Соединения фтора – фториды

6. Физические и химические свойства фтороводорода

7. Кислородные соединения фтора

8. Применение фтора и его соединений

9. Нахождение в природе. Истрия получения хлора

10. Физические и химические свойства фтора

11. Соединения хлора – хлориды. Сравнительная характеристика галогенводородов

12. Кислородные соединения хлора

13. Применение хлора и его соединений. Биологическая роль хлора.

14. Нахождение в природе. История получения брома, йода

15. Физические и химические свойства брома и йода

16. Соединения брома и йода

17. Применение брома и йода

К элементам VII (17) группы главной подгруппы относятся: фтор F, хлор Cl, бром Br, йод I, астат At.

В основном состоянии атомы галогенов имеют электронную конфигурацию внешнего энергетического уровня – …ns 2 np 5 , где n – главное квантовое число (номер периода). Для атомов галогенов характерны следующие степени окисления: для фтора – (–1, 0); для хлора – (–1, 0, +1, +3, (+4), +5, (+6), +7); для брома – (–1, 0, +1, +3, (+4), +5, +7); для астата – (–1, 0, +5).

В табл. 1 представлены основные свойства VII (17) группы главной подгруппы.

Свойство F Cl Br I At
Заряд ядра
Электронная конфигурация внешнего энергетического уровня в основном состоянии …2s 2 2p 5 …3s 2 3p 5 …4s 2 4p 5 …5s 2 5p 5 …6s 2 6p 5
Орбитальный радиус, пм
Энергия ионизации , эВ 17,46 13,01 11,82 10,30 9,2
Энергия сродства к электрону, , эВ 3,45 3,61 3,37 3,08
Электроотрицательность: по Полингу по Оллреду-Рохову 4,00 4,10 3,20 2,83 3,00 2,48 2,70 2,21 2,20 1,96
Температура плавления, ºС –220,6 –100,9 –7,2 +113,5 +298
Температура кипения, ºС –187,7 –34,2 +58,8 +184,5 +411
Дина связи, пм
Е связи, кДж/моль

В VII группе главной подгруппе сверху вниз эффективный заряд ядра увеличивается, орбитальный радиус также увеличивается, энергия ионизации уменьшается, восстановительные свойства атомов возрастают. Для атомов галогенов характерны высокие значения энергии ионизации, поэтому восстановительные свойства для них малохарактерны.



В VII группе главной подгруппе сверху вниз эффективный заряд ядра увеличивается, орбитальный радиус увеличивается, энергия сродства к электрону уменьшается, окислительные свойства атомов уменьшаются.

Атом фтора не имеет свободных d-орбиталей, валентные электроны атома фтора (... 2s 2 2p 5) слабо экранированы от действия ядра, что объясняет небольшой радиус атома фтора и высокие значения энергии ионизации и электроотрицательности. Энергия сродства к электрону у атома фтора меньше, чем у атома хлора. Это связано с небольшим радиусом атома фтора и сильным межэлектронным отталкиванием при присоединении электрона к атому.

В VII группе главной подгруппе сверху вниз энергия ионизации уменьшается, энергия сродства к электрону уменьшается, электроотрицательность уменьшается.

В газообразном, жидком и твердом состоянии молекулы галогенов двухатомны Г 2 . Данные вещества имеют молекулярную кристаллическую решетку, и как следствие этого низкие температуры кипения и плавления.

В VII группе главной подгруппе сверху вниз температуры плавления и кипения возрастают. Для веществ с молекулярной кристаллической решеткой температуры плавления и кипения зависят от величины энергии межмолекулярного взаимодействия. Так как молекулы галогенов неполярны, поэтому для них энергия межмолекулярного взаимодействия зависит только от величины поляризуемости. Поляризуемость возрастает от F 2 к Cl 2 вследствие увеличения длины химической связи и общего числа электронов.

В свободном виде все галогены окрашены: F 2 – бледно-зеленый газ, Cl 2 – желто-зеленого цвета газ; Br 2 – красно-бурая жидкость; I 2 – твердое вещество серо-фиолетового цвета; At – серое вещество с металлическим блеском.

К VII А группы периодической системы Д.И. Менделеева входят Флуор 9F, Хлор 17Cl, Бром 35Br, иод 53И и Астат 85At (стабильных изотопов не имеет). F, Cl, Br, и носят название “галоґены” (в переводе с греческого – солероды). Это название обусловлено их свойством образовывать соли при непосредственном взаимодействии с металлами.
Электронная конфигурация внешнего слоя – ns2nр5. Изменение химических свойств в ряду F – Cl – Br – I – At обусловлено последовательным увеличением размеров ns-, nр-валентных орбиталей. С увеличением порядкового номера атома элемента возрастает плотность, увеличиваются температуры кипения и плавления, растет сила галогеноводневих кислот, уменьшается реакционная способность.
Галогены – типичные неметаллы, под действием восстановителей легко превращаются в галогенид-ионы Г. Родство атома к электрону уменьшается вниз по группе. Галогены энергично взаимодействуют с металлами, с s-металлами образуют ионные соединения. Ионный характер галогенидов несколько ослабляется с увеличением порядкового номера элемента является следствием уменьшения электроотрицательности. Более электроотрицательными элементами галогены проявляют положительные степени окисления.
Свойства фтора заметно отличаются от свойств других галогенов. У него отсутствуют вакантные d-орбитали, электроны 2s22р5 слабо экранированные от ядра, что приводит к высокой электронной плотности, энергии ионизации, электроотрицательности. Поэтому для фтора возможна только степень окисления -1, 0, а для других галогенов 1 (максимальная устойчивость соединений), 0, +1, +3, +5, +7, вероятны также +2, +4, +6). Энергия связи в молекуле F2 аномально мала, что делает ее очень реакционные (фтор непосредственно реагирует со всеми элементами, кроме НЕ, Nе, Аr, с образованием соединений, в которых элементы находятся в максимально возможных степенях окисления). Также следует отметить высокие по сравнению с другими галогенами, энтальпии образования ионных и ковалентных соединений.
2.2 Нахождение в природе

В земной коре содержание фтора составляет 6 · 10-2%, хлора, брома, йода соответственно 2 · 10-2; 2 · 10-4; 4 * 10-5%. Фтор встречается в виде фторид (около 30 минералов, наиболее важные – СаF2 (флюорит или плавиковый шпат), 3Ca3 (PO4) 2CaF2 (фторапатит), Na3 – криолит). Хлор образует около 70 собственных минералов, главным образом это хлориды легких металлов (каменная соль, галит NaCl; сильвин KCl, карналлит KCl MgCl2 6H2O и т.п.). Основная масса галогенов сконцентрирована в воде морей и океанов. Бром и йод также содержатся в буровых водах, морских водорослях (например, в морской капусте (ламинарии) содержание йода достигает 0,45%).
2.3 Физические свойства

В газообразном, жидком и твердом состоянии галогены – двухатомные молекулы Г2. Фтор – светло-желтый газ с очень неприятным резким запахом. Хлор – зелено-желтый газ с резким запахом, бром – красно-бурая тяжелая жидкость с резким запахом йод – черные, металлически блестящие кристаллы (при нагревании превращается в фиолетовый газ (сублимация) – рисунок 2.1. Температуры плавления и кипения монотонно увеличиваются от фтора к йоду с увеличением размера молекулы и усилением межмолекулярного взаимодействия.

а
бы
в
а – хлор; б – бром; в – йод
Рисунок 2.1 – Внешний вид хлора, брома, йода

2.4 Методы извлечения

Фтор получают электролизом расплавов фторид (преимущественно КНF2, что позволяет проводить электролиз при 1000С, тогда как КF плавится при температуре 8570С.
Промышленное производство хлора основывается на электролизе водных растворов NаСl. В лабораторных условиях его получают взаимодействием концентрированной HCl с окислителями:
MnO2 + 4HCl → MnCl2 + Cl2 + 2H2O
2KMnO4 + 16HCl → 2MnCl2 + 2KCl + 5Cl2 + 8H2O
Особенно чистый хлор получают по реакции:
2AuCl3 → 2Au + 3Cl2
Бром в промышленности получают из морской воды, предварительно избавившись NаСl: 2Br – + Cl2 → Br2 + 2Cl-
Бром выдувают потоком воздуха и поглощают железными стружками или другими веществами, например:
Na2CO3 + Br2 → NaBrO + NaBr + CO2
NaBrO + NaBr + H2SO4 → Br2 + Na2SO4 + H2O
В лабораторных условиях бром получают по реакции:
2KBr + Cl2 → 2KCl + Br2
Йод в промышленности также добывают из морской воды, воды нефтяных скважин, золы морских растений:
2NaI + Cl2 → 2NaCl + I2
В лаборатории йод получают по реакции:
2NaI + MnO2 + 2H2SO4 → I2 + MnSO4 + Na2SO4 + 2H2O
Йод адсорбируют активированным углем или экстрагируют растворителями, очищают – сублимацией.
2.5 Химические свойства элементов VII А группы

По химическим свойствам галогены – активные неметаллы. Благодаря низкой энергии диссоциации молекулы фтора, самой электроотрицательности атома и высокой энергии гидратации иона, фтор – сильнейший окислитель (окисляет другие элементы в высшие положительных степеней окисления), энергично реагирует с простыми веществами за исключением Hе, Е и А r. В ряду от фтора к йоду окислительные свойства уменьшаются, а восстановительные – увеличиваются.

Взаимодействие с водой:
С водой фтор взаимодействует чрезвычайно энергично:
2F2 + 2H2O → 4HF + O2,
Реакция сопровождается образованием озона и ОF2.
При растворении хлора в воде происходит реакция:
H2O + Сl2 HOСl + HСl – при комнатной температуре в насыщенном растворе Сl2 в воде примерно 70% хлора находится в виде молекул, тогда как равновесие для йода почти полностью смещена влево.
Взаимодействие со сложными веществами:
Фтор реагирует со щелочами с образованием ОF2:

При действии хлора на холодные растворы щелочей образуются соли хлорноватистой кислоты:
Сl2 + 2KOH → KOСl + KСl + H2O
калия гипохлорит
При воздействии на горячий раствор щелочи (70-800С) образуются соли хлорноватой кислоты – хлораты:
3Сl2 + 6KOH → KСlО3 + 5KСl + 3H2O
калия хлотрат
Йод и бром также преимущественно образуют при взаимодействии с щелочами триоксогалогенаты.
Хлор реагирует с раствором соды:
2Na2CO3 + Cl2 + H2O → NaClO + NaCl + 2NaHCO3
“Жавелевая вода”
Йод в незначительной степени проявляет свойства, характерные для металлов. Так можно получить йод нитрат, который разлагается при температуре ниже 0 ° С.
I2 + AgNO3 AgI + INO3; 3INO3 → I2 + I (NO3) 3
2.6 Соединения галогенов

Галогеноводородов
При стандартных условиях галогеноводороды – бесцветные газы с резким запахом. С ростом массы и размера молекул усиливается межмолекулярное взаимодействие, и, как следствие, повышаются температуры плавления и кипения. Фтороводорода имеет аномально высокие температуры плавления (-83 ° С) и кипения (-19,5 ° С), что объясняется образованием водородных связей между молекулами НF.
Благодаря высокой полярности галогеноводороды хорошо растворяются в воде с образованием кислот, сила которых увеличивается в ряду НF-НСl-НВr-НЕ (вследствие увеличения радиуса). Восстановительная активность галоґенид ионов в ряду F- → СИ- → Br- → I- также увеличивается. НЕТ – сильный восстановитель, применяется в органическом синтезе. На воздухе водный раствор НЕТ постепенно окисляется кислородом воздуха:
4HI + O2 → 2I2 + 2H2O
Аналогично ведет себя и НВr. Плавиковая (НF) и соляная кислота (НСl) не реагируют с концентрированной серной кислотой, а НВr и НЕТ окисляются ней.
Основное количество соляной кислоты получают при хлорировании, дехлорирования органических соединений, пиролизе (расписание при нагревании без доступа воздуха) хлорорганических отходов – побочных продуктов различных процессов. Кроме того, галогеноводороды получают:
прямым синтезом из элементов: Н2 + Г2 2НГ
Эта цепная реакция, которая тоже лежит в основе промышленного получения HCl, инициируется светом, влагой, твердыми пористыми веществами.
вытеснением НГ с их солей (лабораторные методы добычи):
CaF2 + H2SO4 → CaSO4 ↓ + 2HF;
NaCl + H2SO4 (к) → NaHSO4 + HCl;
NaHSO4 + NaCl → Na2SO4 + HCl.
– Кислоты НВr, ни получают гидролизом галоґенидив фосфора:
PЕ3 + 3H2O → H3PO3 + 3HЕ (Е – Br или I).
Особенностью НF и его водных растворов является разрушение кварца и стекла:
SiO2 + 4HF → SiF4 + 2H2O
SiF4 + 2HF → H2
Поэтому HF хранят в полиэтиленовой посуде или стеклянной, но покрытом внутри воском или парафином. Редкий НF – сильно ионизирующего растворитель. С водой смешивается в любых соотношениях. В разбавленных водных растворах существует равновесие:
HF + H2O H3O + + F-;
F- + HF HF2-;
При нейтрализации НF можно получить калий бифторид (калий гидроґенфторид):
2HF + KOH → KHF2 + H2O
KHF2 + KOH → 2KF + H2O
Фториды (соли плавиковой кислоты) – малорастворимые в воде (исключение – NaF, KF, NH4F, AgF, SnF2), их разделяют, аналогично оксидам, на кислотные (SiF4), основные (NaF) и амфотерные (AlF3). Могут реагировать между собой:
2NaF + SiF4 → Na2
KF + SbF5 → K
3KF + AlF3 → K3
Хлориды – соли соляной кислоты – растворяются в воде, за исключением АgСl, НgСl2, Hg2Cl2, РbСl2.
Бромиды, йодиды – растворяются в воде, за исключением АgВr, АgI, РbI2, РbВr2.
Соединения галогенов С кислорода
Бинарные оксигенвмисних соединения фтора называются фторид (Флуор более электроотрицательным чем кислород). Стойким при обычных условиях является оксиґен дифлуорид – ОF2, который образуется по реакции:
2NaOH + 2F2 → 2NaF + OF2 + H2O
ОF2 – светло-желтый газ, реакционно активный, сильный окислитель:
2H2 + OF2 → H2O + 2HF.
Другие галогены в соединениях с кислорода проявляют положительные степени окисления.
Среди оксидов практическое значение имеет И2О5 (единственный термодинамически устойчив оксид галогенидов) – бесцветное кристаллическое вещество. Окислитель средней силы, применяется для количественного определения СО:
I2O5 + 5CO → I2 + 5CO2
I2 + 2Na2S2O3 → 2NaI + Na2S4O6
Оксиґеновмисни соединения хлора получают косвенным путем. Сравнительно стабильными являются Сl2О, ClO2, Cl2O7:
Сl2O – темно-желтый газ с резким запахом, ядовит, неустойчивый, может взрываться. Получают этот оксид по реакции: 2HgO + 2Cl2 → HgCl2 + Cl2O.
Cl2O реагирует с водой: Cl2O + H2O → 2HOCl или 2НСl – хлорноватистая кислота. Эта кислота является неустойчивой, существует только в разбавленном растворе.
НОСl и ее соли гипохлориты – сильные окислители:
NaOCl + 2KI + H2SO4 → I2 + NaCl + K2SO4 + H2O
ClO2 – газ зеленовато-желтого цвета, с резким запахом, ядовит, при нагревании может взрываться, энергичный окислитель.
ClO2, единственный из оксидов галогенов, который получают в промышленных масштабах за реакциями:
КClO3 + H2SO4 → HClO3 + KHSO4
3HClO3 → 2ClO2 + HClO4 + H2O
В воде СlО2 диспропорционирует, как и в растворах щелочей:
2СlО2 + H2O → HClO3 + HClО2
хлорноватая кислота хлоритна кислота
2ClO2 + 2KOH → KClO3 + KClO2 + H2O
Сl2О7 – маслянистая жидкость, взрывается при нагревании до 120 ° С, получают по реакции: 4HClO4 + Р4О10 → 2Cl2O7 + 4НРО3.
Cl2O7 реагирует с водой: Cl2O7 + H2O → 2HClO4

Гипогалогенитни кислоты НПО известны только в разбавленных водных растворах. Их получают взаимодействием галогена с суспензией ртути оксида:
2I2 + HgO + H2O → HgI2 + 2HOI.
Это слабые кислоты, в ряду HOCl → HOBr → HOI уменьшается сила кислот, основные свойства увеличиваются. HOI уже амфотерна соединение.
Гипогалогениты – неустойчивые соединения с сильными окислительными свойствами, получают при взаимодействии Г2 с охлажденным раствором щелочи. Таким образом получают в промышленности хлорная известь, долгое время широко применялось в качестве дезинфицирующего и отбеливающего средства:

С оксигеновмисних кислот галогенов НГО2 известна только хлористая кислота HClO2, в свободном состоянии неустойчива кислота средней силы (Кд = 10-2). Технического значения она не имеет. Практическое значение имеет NaClO2 – сильный окислитель, применяется как отбеливающее средство для тканей, в небольшом количестве (около 0,4%) входит в стирального порошка. Получают по реакции:
Na2O2 + 2ClO2 → O2 + 2NaClO2
Оксокислоты НГО3 более устойчивыми, чем НГО. HClO3, HВrO3 существуют только в растворах, концентрация которых не превышает 50%, а HIO3 выделена как индивидуальная соединение.
В ряду HClO3 → HBrO3 → HIO3 сила кислот снижается, они более слабыми окислителями, чем НОГ.
HClO3 получают в процессе реакций:
6Ba (OH) 2 + 6Cl2 → 5BaCl2 + Ba (ClO3) 2 + 6H2O
Ba (ClO3) 2 + H2SO4 → BaSO4 ↓ + 2HClO3
HBrO3 получают по реакции:
Br2 + 5Cl2 + 6H2O → 2HBrO3 + 10HCl
HIO3 можно получить:
3I2 + 10HNO3 → 6HIO3 + 10NO + 2H2O
Соли этих кислот, сильные окислители, получают по реакции:
3Г2 + 6КОН → КЕО3 + 5ке + 3Н2О
Широкое использование в промышленности имеет KClO3 – бертолетовая соль – применяется в изготовлении спичек, фейерверкив, взрывчатых веществ.
Оксокислоты НГО4
НСlО4 – жидкость, дымит на воздухе. Ее получают в ходе реакции:
KClO4 + H2SO4 → HClO4 + KHSO4
Безводная НСlО4 – очень сильный окислитель, одна из самых сильных кислот, которая применяется в неорганическом и органическом синтезе. Соли – перхлораты, большинство которых растворяется в воде, за исключением КСlО4, RbClO4, CsClO4, Mg (ClO4) 2 (техническое название “Ангидрон») – один из самых сильных осушителей.
Бромная кислота известна только в водных растворах.
Перйодатная кислота H5IO6 – слабая кислота, хорошо растворимый в воде, образует средние и кислые соли. Кислоту получают по реакции:
Ba5 (IO6) 2 + 5H2SO4 → 5BaSO4 + 2H5IO6.
Соли Перйодатная кислоты можно получить:
KIO3 + Cl2 + 6KOH → K5IO6 + 2KCl + 3H2O
Межгалогенные СОЕДИНЕНИЯ
В отличие от элементов других групп галогены взаимодействуют друг с другом с образованием большого количества интергалогенидив с общей формулой ХYn (n = 1, 3, 5,7) – таблица 2.3, где Y – более легкий и электроотрицательным галоген. Получают их непосредственным взаимодействием простых веществ, при различных соотношений реагентов, температур и давлений.
Все интергалогениды, кроме ВrСl, разлагаются под действием воды. Имеют сильные окисювальни свойства.
2.7 Использование

Галогены и их соединения широко применяются в промышленности, сельском хозяйстве, быту. По масштабам промышленного производства первое место среди галогенов занимает хлор, второе – фтор. Основные сферы применения галогенов и их соединений приведены в таблице 2.4
Кроме того, оксигенвмисних соединения галогенов применяют в пиротехнике. Соединения фтора используются для производства глазури и эмали; HF – для травления стекла. Хлорсодержащие соединения широко применяют в качестве боевых отравляющих веществ (фосген, иприт, хлорпикрин и т.д.). АgВr используют в фотографии, КВr – в оптике. Йод и бром применяют в галогенных лампах. Распиловка в облаках аэрозолей АgI i PbI2 вызывает (искусственно) дождь, является средством борьбы с градом. Некоторые йодорганични соединения используются для производства сверхмощных газовых лазеров.
2.8 Биологическая роль и токсикология

Фтор и его соединения чрезвычайно ядовиты. F2 имеет раздражающее действие, в несколько раз более чем НF. Попадая на кожу, НF растворяет белки, глубоко проникает в ткани, вызывает тяжелые язвы. Фтор в составе фторапатита входит в состав зубной эмали, его дефицит вызывает кариес, а избыток – повышение ломкости костей.
Хлор относится к группе удушливых веществ, вызывает сильное раздражение слизистых оболочек, может привести к отеку легких. Высокие концентрации приводят к рефлекторного торможения дыхательного центра. Хлор – важнейший биогенный элемент. Хлорид-ионы входят в состав желудочного сока, участвуют в различных внутриклеточных процессах – поддержании осмотического давления и регуляции водно-солевого обмена.
Пары брома также приводят к раздражению слизистых оболочек, головокружение, а более высокие концентрации вызывают спазмы дыхательных путей поражения обонятельного нерва. При попадании жидкого брома на кожу образуются очень болезненные ожоги и язвы, трудно загаюються. Соединения брома регулируют процессы возбуждения и торможение центральной нервной системы.
Вдыхание паров йода вызывает поражение почек и сердечно-сосудистой системы, дыхательных путей, возможен отек легких. При попадании на слизистую глаз появляется боль в глазах, покраснение, слезоточивость. Йод входит в состав тиреоидных гормонов щитовидной железы (тироксин, трийодтиронин), которые играют очень важную роль в обмене веществ.

1. Какие степени окисления проявляют галогены в соединениях? Какие особенности валентных состояний фтора? Почему металлы проявляют высшие степени окисления в соединениях с фтора?
2. Проанализируйте изменения свойств в ряду галогенов.
3. Проиллюстрируйте реакциями промышленные и лабораторные способы получения галогенов.
4. Приведите сравнительную характеристику окислительно-восстановительных свойств галогенов на примере различных реакций.
5. Как изменяются физические и химические свойства в ряду НF-НСl-НВr-НЕТ?
6. Напишите уравнения реакций взаимодействия галогенов с водой и щелочами.
7. Как изменяются сила и окислительно-восстановительные свойства оксигенвмисних кислот галогенов? Ответ аргументируйте.
8. Какие неорганические соединения фтора, хлора, брома и йода используются в медицине? В каких еще отраслях широко используются галогены и их соединения?
9. Напишите уравнения реакций, с помощью которых можно осуществить превращения:
РbВr2 → HBr → Br2 → КBrO3 → НBrO3 → FeBr3;
Сl2 → КClO3 → КClО4 → НClО4 → ClO2 → НClO3;
Сl2 → НCl → КCl → Cl2 → ВаCl2 → НCl.
10. Какую биологическую роль в организме человека играют галогены?

ПОДІЛИТИСЯ:

9 F 1s 2 2s 2 2p 5


17 Cl 3s 2 3p 5


35 Br 3d 10 4s 2 4p 5


53 I 4d 10 5s 2 5p 5


85 At 4f 14 5d 10 6s 2 6p 5


5 элементов главной подгруппы VII группы имеют общее групповое название «галогены» (Hal), что означает «солерождающие».


В подгруппу галогенов входят фтор, хлор, бром, иод и астат (астат - радиоактивный элемент, изучен мало). Это р-элементы группы периодической системы Д.И. Менделеева. На внешнем энергетическом уровне их атомы имеют по 7 электронов ns 2 np 5 . Этим объясняется общность их свойств.

Свойства элементов подгруппы галогенов


Они легко присоединяют по одному электрону, проявляя степень окисления -1. Такую степень окисления галогены имеют в соединениях с водородом и металлами.


Однако атомы галогенов, кроме фтора, могут проявлять и положительные степени окисления: +1, +3, +5, +7. Возможные значения степеней окисления объясняются электронным строением, которое у атомов фтора можно представить схемой


Будучи наиболее электроотрицательным элементом, фтор может только принимать один электрон на 2р-подуровень. У него один неспаренный электрон, поэтому фтор бывает только одновалентным, а степень окисления всегда -1.


Электронное строение атома хлора выражается схемой:



У атома хлора один неспаренный электрон на 3р-подуровне и обычном (невозбужденном) состоянии хлор одновалентен. Но поскольку хлор находится в третьем периоде, то у него имеется еще пять орбиталей 3 -подуровня, в которых могут разместиться 10 электронов.


В возбужденном состоянии атома хлора электроны переходят с 3p - и 3s-подуровней на 3d-подуровень (на схеме показано стрелками). Разъединение (распаривание) электронов, находящихся в одной орбитали, увеличивает валентность на две единицы. Очевидно, хлор и его аналоги (кроме фтора) могут проявлять лишь нечетную переменную валентность 1, 3, 5, 7 и соответствующие положительные степени окисления. У фтора нет свободных орбиталей, а значит, при химических реакциях не происходит разъединения спаренных электронов в атоме. Поэтому при рассмотрении свойств галогенов всегда надо учитывать особенности фтора и соединений.


Водные растворы водородных соединений галогенов являются кислотами: НF - фтороводородная (плавиковая), НСl - хлороводородная (соляная), НВr - бромводородная, НI - йодоводородная.

Одинаковое строение внешнего электронного слоя (ns 2 np 5) обусловливает большое сходство элементов.

Простые вещества - неметаллы F 2 (газ), Cl 2 (газ), Вг 2 (ж), l 2 (тв.).


При образовании ковалентных связей галогены чаще всего используют один неспаренный р-электрон, имеющийся в невозбужденном атоме, проявляя при этом В = I.

Валентные состояния атомов CI, Br, I.

Образуя связи с атомами более электроотрицательных элементов, атомы хлора, брома и йода могут переходить из основного валентного состояния в возбужденные, что сопровождается переходом электронов на вакантные орбитали d-подуровня. При этом число неспаренных электронов увеличивается, вследствие чего атомы CI, Br, I могут образовывать большее число ковалентных связей:


Отличие F от других галогенов

В атоме F валентные электроны находятся на 2-м энергетическом уровне, имеющем только s- и р- подуровни. Это исключает возможность перехода атомов F в возбужденные состояния, поэтому фтор во всех соединениях проявляет постоянную В, равную I. Кроме того, фтор - самый электроотрицательный элемент, вследствие чего имеет и постоянную с. о. -1.

Важнейшие соединения галогенов

I. Галогеноводороды HHal.


II Галогениды металлов (соли галогеноводородных кислот) - самые многочисленные и устойчивые соединения галогенов


III. Галогенорганические соединения


IV. Кислородсодержащие вещества:


Неустойчивые оксиды, из которых достоверным можно считать существование 6 оксидов (Cl 2 O, ClO 2 , Cl 2 O 7 , Вr 2 O, ВrO 2 , I 2 O 5);


Неустойчивые оксокислоты, из которых только 3 кислоты выделены как индивидуальные вещества (НСlO 4 , НlO 3 , НlO 4);


Соли оксокислот, главным образом хлориты, хлораты и перхлораты.

К p-элементам VII ­группы относятся – фтор (F ), хлор (Сl ), бром (Вr ), йод (I ) и астат (Аt ). Данные элементы называют галогенами (рождающие соли). Все элементы данной подгруппы – неметаллы.

Общая электронная формула валентной зоны атомов имеет вид ns 2 np 5 , из которой следует, что на внешнем элек­тронном слое атомов рас­сматриваемых элементов находится семь электро­нов и они могут проявлять нечетные валентности 1, 3, 5, 7. У атома фтора отсутствует d-подуровень, поэтому возбужденные состояния отсутствуют и валентность фтора равна только 1.

Фтор – самый электроотрицательный элемент в периодической таблице и соответственно в соединениях с другими элементами проявляет только отрицательную степень окисления –1. Остальные галогены могут иметь степени окисления –1, 0, +1, +3, +5, +7. Каждый галоген в своем периоде является наиболее сильным окислителем. С повышением поряд­кового номера элементов в ряду F, С1, Br, Iи At увеличиваются радиусы атомов и уменьшается окислительная активность элементов.

Молекулы простых веществ двухатомны: F 2 , С1 2 , Br 2 , I 2 . При нормальных условиях фтор – газ бледно-жёлтого цвета, хлор – газ жёл­то-зелёного цвета, бром – красно-бурая жидкость, йод – кристаллическое вещест­во темно-фиолетового цвета. Все галогены обладают очень резким запахом. Вдыхание их приводит к тяжелым отравлениям. При нагревании йод сублимируется (возгоняется), превращаясь в пар фиолетового цвета; при охлаждении пары йода кристаллизуются, минуя жидкое состояние.

Галогены слабо растворимы в воде, но значительно лучше в органических растворителях. Фтор нельзя растворить в воде, так как он разлагает её:

2F 2 + 2Н 2 O = 4НF + О 2 .

При растворении хлора в воде происходит его частичное самоокисление-самовосстановление по реакции

С1 2 + Н 2 O ↔ НС1+ НС1О.

Полученный раствор называется хлорной водой. Он обладает сильными кислотными и окислительными свойствами и применяется для обеззараживания питьевой воды.

Галогены вступают во взаимодействие с многими простыми веществами, проявляя свойства окислителей. Фтор с многими неме­таллами реагирует со взрывом:

Н 2 + F 2 → 2HF,

Si + 2F 2 → SiF 4 ,

S + 3F 2 → SF 6 .

В атмосфе­ре фтора горят такие устойчивые вещества, как стекло в виде ваты и вода:

SiО 2 + 2F 2 → SiF 4 + О 2 ,

2Н 2 О + 2F 2 → 4HF + О 2 .

Фтор непосредственно не взаимодей­ствует только с кислородом, азотом, гелием, неоном и аргоном.

В атмосфере хлора сгорают многие металлы, образуя хлориды:

2Na + С1 2 → 2NaCl (яркая вспышка);

Сu + С1 2 → СuС1 2,

2Fe + 3Сl 2 → 2FeCl 3 .

Хлор непосредст­венно не взаимодействует с N 2 , О 2 и инертными газами.


Окислительная активность галогенов уменьшается от фтора к астату, а вос­становительная активность галогенид-ионов в этом направлении увеличивается. Из этого следует, что более активный галоген вытесняет менее активный из растворов его солей:

F 2 + 2NaCl → Cl 2 + 2NaF,

Cl 2 + 2NaBr → Br 2 + 2NaCl,

Вг 2 + 2NaI → I 2 + 2NaBr.

Водородные соединения галогенов хорошо растворимы в воде. Их водные растворы представляют собой кислоты:

HF– фтороводородная (плавиковая) кис­лота,

НС1 – хлороводородная кислота (водный раствор – соляная),

НВг – бромоводородная кислота,

HI – йодоводородная кислота.

НF должна быть одной из самых сильных кислот, но вследствие образования водородной связи (Н–F···Н–F) является слабой кислотой. Подтверждением наличия водородной связи между молекулами Н–F, как и в случае воды, является аномально высокая температура кипения Н–F.

Плавиковая кислота реагирует с SiО 2, поэтому HF нельзя получать и хранить в стеклянной посуде

SiО 2 + 4HF = SiF 4 + 2Н 2 О.

Остальные галогенводороды являются сильными кислотами.

Хлор, бром и йод образуют кислородсодержащие кислоты и соответствующие им соли. Ниже, на примере хлора, приведены формулы

кислот и соответствующих им солей:

НСlО, НСlО 2 , НСlО 3 , НСlО 4 ;

хлорноватистая хлористая хлорноватая хлорная

усиление кислотных свойств

КСlО, КСlО 2 , КСlО 3 , КСlО 4 .

гипохлорит калия хлорит калия хлорат калия перхлорат калия

Хлорная и хлорноватая кислоты являются сильными, а хлористая и хлорноватистая – слабыми. Из солей можно отметить:

СаОС1 2 – «хлорная известь» представляет собой сме­шанную соль соляной и хлорноватистой кислот.

КСlO 3 – хлорат калия, техническое название – бертолетова соль.

Фтор и его соединения применяются для получения термоустойчивых пластмасс (тефлон), хладагентов (фреоны) для холодильных машин.

Хлор используется в больших количествах для производства соляной кис­лоты синтетическим методом, хлорорганических инсектицидов, пластмасс, син­тетических волокон, хлорной извести, отбеливания тканей и бумаги, хлорирова­ния воды в целях обеззараживания, для хлорирования руд при получении металлов.

Соединения брома и йода используются для производства лекарственных препаратов, фотоматериалов.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: