Creativenn - Портал рукоделия

Энциклопедичный YouTube

    1 / 5

    ✪ 5 УЖАСНЫХ мутаций человека, которые ШОКИРОВАЛИ ученых

    ✪ Виды мутаций. Генные мутации

    ✪ 10 СУМАСШЕДШИХ МУТАЦИЙ ЧЕЛОВЕКА

    ✪ Виды мутаций. Геномные и хромосомные мутации

    ✪ Урок биологии №53. Мутации. Виды мутаций.

    Субтитры

    Ник Вуйчич родился с редким наследственным заболеванием под названием синдром Тетра-Амелия. У мальчика отсутствовали полноценные руки и ноги, но имелась одна частичная стопа с двумя сросшимися пальцами; это позволило мальчику после хирургического разделения пальцев научиться ходить, плавать, кататься на скейте, работать на компьютере и писать. Переживая по поводу инвалидности в детстве, он научился жить со своим недостатком, делясь своим опытом с окружающими и став всемирно известным мотивационным спикером. В 2012 году Ник Вуйчич женился. И впоследствии у пары родились 2 абсолютно здоровых сына. В 2015 году в Египте родился младенец с одним глазом посередине лба. Врачи сказали, что новорожденный мальчик страдает от циклопии - необычного заболевания, название которого происходит от одноглазых гигантов из греческой мифологии. Заболевание стало следствием радиационного облучения в утробе матери. Циклопия является одним из самых редких форм врожденных дефектов. Дети, рожденные с этим заболеванием, зачастую умирают вскоре после рождения, так как они часто имеют и другие серьезные дефекты, в том числе повреждения сердца и других органов. В США в штате Айова живет Айзек Браун, у которого выявлено очень необычное заболевание. Суть этой болезни заключается в том, что ребенок не чувствует боли. По причине этого, родители Айзека вынуждены постоянно следить за своим сыном, чтобы не допустить серьезных травм ребенка. Способность мальчика не ощущать боль является следствием редкого генетического заболевания. Конечно же, мальчик при травмах испытывает боль, только эти ощущения в несколько раз слабее, чем у всех людей. Сломав ногу, Айзек понял, что с его ногой просто что-то не так, поскольку он не может как обычно ходить, но боли не было. Помимо того, что малыш не ощущает боль, у него при обследовании обнаружили ангидроз, то есть отсутствует способность регулирования температуры собственного тела. В настоящее время специалисты изучают образцы ДНК мальчика, в надежде найти дефект в генах и разработать методы лечения подобного недуга. У маленькой американки по имени Габби Уильямс редкое состояние организма. Она будет оставаться вечно молодой. Сейчас ей 11 лет и она весит 5 килограмм. При этом у нее лицо и тело ребенка. Ее странное отклонение окрестили реальной историей Бенджамина Баттона, ведь девочка стареет на год за четыре прожитых. И это - удивительное явление, над которым ломают умы десятки специалистов. Когда она родилась, то была фиолетовой и слепая. Тесты показали, что у нее была аномалия головного мозга и ее зрительный нерв был поврежден. У нее два порока сердца, волчья пасть, и аномальный глотательный рефлекс, поэтому она может есть только через трубку в носу. Также девочка совершенно немая. Малышка умеет только плакать или иногда улыбаться. Отклонений в ДНК нет, но Габби почти не стареет в сравнении с другими людьми и в чем причина - никто не знает. Хавьер Ботет страдает от редкого генетического недуга, известного как Синдром Марфана. Люди с этой болезнью отличаются высоким ростом, худобой, имеют удлиненные конечности и пальцы. Их кости не только вытянуты, но обладают еще и удивительной гибкостью. Стоит заметить, что без лечения и ухода, страдающие от Синдрома Марфана редко доживают до сорока лет. Хавьер Ботет при 2-метровом росте весит всего 45 кг. Эти специфические внешние данные, особенности физического строения и генетической системы помогли Ботет стать "своим" в фильмах ужасов. Он сыграл ужасающе худого зомби из трилогии "Репортаж", а также жутких призраков в фильмах "Мама", "Багровый пик" и "Заклятие 2".

Причины мутаций

Мутации делятся на спонтанные и индуцированные . Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около 10 − 9 {\displaystyle 10^{-9}} - 10 − 12 {\displaystyle 10^{-12}} на нуклеотид за клеточную генерацию организма.

Индуцированными мутациями называют наследуемые изменения генома , возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды .

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций - репликация ДНК , нарушения репарации ДНК , транскрипции и генетическая рекомбинация .

Связь мутаций с репликацией ДНК

Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают при репликации . Например, из-за дезаминирования цитозина напротив гуанина в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин , образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Связь мутаций с рекомбинацией ДНК

Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер . Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация , а в другой - делеция .

Связь мутаций с репарацией ДНК

Таутомерная модель мутагенеза

Предполагается, что одной из причин образования мутаций замены основания является дезаминирование 5-метилцитозина , что может вызывать транзиции от цитозина к тимину. Из-за дезаминирования цитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Классификации мутаций

Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлении, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурной на бурую) и неоморфные .

В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

  • геномные ;
  • хромосомные ;
  • генные .

Точечная мутация, или единственная замена оснований, - тип мутации в ДНК или РНК, для которой характерна замена одного азотистого основания другим. Термин также применяется и в отношении парных замен нуклеотидов. Термин точечная мутация включает так же инсерции и делеции одного или нескольких нуклеотидов. Выделяют несколько типов точечных мутаций.

Встречаются также сложные мутации. Это такие изменения ДНК, когда один её участок заменяется участком другой длины и другого нуклеотидного состава .

Точечные мутации могут появляться напротив таких повреждений молекулы ДНК, которые способны останавливать синтез ДНК. Например, напротив циклобутановых пиримидиновых димеров. Такие мутации называются мишенными мутациями (от слова «мишень») . Циклобутановые пиримидиновые димеры вызывают как мишенные мутации замены оснований , так и мишенные мутации сдвига рамки .

Иногда точечные мутации образуются на, так называемых, неповрежденных участках ДНК, часто в небольшой окрестности от фотодимеров. Такие мутации называются немишенными мутациями замены оснований или немишенными мутациями сдвига рамки .

Точечные мутации образуются не всегда сразу же после воздействия мутагена. Иногда они появляются после десятков циклов репликаций. Это явление носит название задерживающихся мутаций . При нестабильности генома, главной причине образования злокачественных опухолей, резко возрастает количество немишенных и задерживающихся мутаций .

Возможны четыре генетических последствия точковых мутаций: 1) сохранение смысла кодона из-за вырожденности генетического кода (синонимическая замена нуклеотида), 2) изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация), 3) образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер - UAG, охр - UAA и опал - UGA (в соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов - например амбер-мутация), 4) обратная замена (стоп-кодона на смысловой кодон).

По влиянию на экспрессию генов мутации разделяют на две категории: мутации типа замен пар оснований и типа сдвига рамки считывания (frameshift) . Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трём, что связано с триплетностью генетического кода.

Первичную мутацию иногда называют прямой мутацией , а мутацию, восстанавливающую исходную структуру гена, - обратной мутацией , или реверсией. Возврат к исходному фенотипу у мутантного организма вследствие восстановления функции мутантного гена нередко происходит не за счет истинной реверсии, а вследствие мутации в другой части того же самого гена или даже другого неаллельного гена. В этом случае возвратную мутацию называют супрессорной. Генетические механизмы, благодаря которым происходит супрессия мутантного фенотипа, весьма разнообразны.

Почковые мутации (спорты) - стойкие соматические мутации происходящие в клетках точек роста растений. Приводят к клоновой изменчивости . При вегетативном размножении сохраняются. Многие сорта культурных растений являются почковыми мутациями .

Последствия мутаций для клетки и организма

Мутации, которые ухудшают деятельность клетки в многоклеточном организме, часто приводят к уничтожению клетки (в частности, к программируемой смерти клетки, - апоптозу). Если внутри- и внеклеточные защитные механизмы не распознали мутацию и клетка прошла деление, то мутантный ген передастся всем потомкам клетки и, чаще всего, приводит к тому, что все эти клетки начинают функционировать иначе.

Кроме того, закономерно различается частота мутирования разных генов и разных участков внутри одного гена. Также известно, что высшие организмы используют «целенаправленные» (то есть происходящие в определенных участках ДНК) мутации в механизмах

mutation) - изменение количества или структуры ДНК данного организма. При точечной мутации (point mutation) (или генной мутации (gene mutation)) такому изменению подвергается какой-либо один ген; при хромосомной мутации (chromosome mutation) изменяется структура или количество хромосом. Все виды мутаций являются достаточно редким явлением и могут возникать самопроизвольно или под действием каких-либо внешних агентов (мутагенов). Если мутация возникает в развивающихся половых клетках (гаметах), то она может передаваться по наследству. Мутации в каких-либо других клетках (соматические мутации (somatic mutations)) по наследству обычно не передаются.

МУТАЦИЯ

Скачкообразное изменение генетического материала, вызванное факторами, отличными от нормальных Менделевских рекомбинаций. Мутации становятся частью генетического материала (то есть они генотипичны), хотя их влияние может не проявляться в фенотипе отдельного организма. Большинство мутаций затрагивают отдельные гены, но встречаются также и глобальные изменения хромосом, затрагивающие многие гены. Мутация может также происходить в теле клетки (так называемая соматическая мутация), затем она передается путем митоза этой клетки. С точки зрения адаптивной ценности мутации для отдельного организма, результаты очень случайны; их роль в эволюции опосредована процессом естественного отбора. Вообще говоря, большие (макро) мутации вредны для организма, и, следовательно, они не передаются; малые (микро) мутации, согласно стандартной точке зрения, являются самой "сутью" эволюции.

Мутация

внезапные естественные или искусственно вызванные изменения носителей наследственной информации организма, не связанные с процессом нормального перераспределения (рекомбинации) генов. Способность к М. присуща всем растительным и животным организмам и обусловливает одну из двух основных форм наследственной изменчивости - мутационную изменчивость. Различают три типа мутаций: генные, хромосомные и геномные.

Мутация

лат. mutatio - изменение, перемена) – скачкообразное и стойкое изменение генетического материала, вызванное факторами, отличными от считающихся нормальными Менделевских рекомбинаций генов. Различаются: 1. гаметические мутации (возникающие в генеративных, половых клетках); 2. соматические мутации (возникающие в соматических клетках тела). В зависимости от характера изменений генетического аппарата мутации делятся далее на: 3. геномные мутации (это, например, диплоидия, то есть удвоение генома клетки); 4. хромосомные мутации (например, трисомия, то есть появление какой-то одной дополнительной к нормальным двум хромосомы); 5. генные мутации (например, изменение структуры одного какого-то гена, нескольких генов одновременно); 6. цитоплазматическими называют мутации генов, локализованных вне клеточного ядра. Большинство известных мутаций затрагивает отдельные гены, реже встречаются другие мутации. Роль мутаций в эволюции опосредована процессом естественного отбора. Подавляющее большинство мутаций носит деструктивный, нарушающий жизнеспособность и препятствующий эволюции биологических видов характер. См. Дарвинизм.

Окружающая среда играет не последнюю роль в формировании организмов. Несмотря на то, что репликация ДНК происходит с феноменальной точностью, время от времени происходит сбой программы, или мутация. Причиной сбоя может быть наследственная дисфункция ДНК, однако, часто это проявление возможного влияние окружающего мира.

Следует иметь в виду, что вся классификация мутаций в достаточной степени условна и зависит во многом от того, в каких условиях происходит жизнедеятельность конкретного организма.

Скажем, некоторые насекомые мутировали и приобрели иммунитет к действию ДДТ и прочим инсектицидам до того, как впервые встретились с их разрушительным воздействием на популяцию. Следовательно, сначала их мутация была нейтральной, не воздействующей на организм и способ жизнедеятельности. Но после того как эта мутация помогла насекомым выжить в критических условиях, она стала полезной.

Сторонники мутационной теории эволюции считают сами мутации явлениями случайными. При этом высоко оценивая «естественный отбор», в чьи функции входит оценка мутационных изменений и пресечение развития вредных мутаций организма.

Особую роль в развитии отдельного вида играют такие хромосомные и геномные мутации как полиплоидия (увеличение числа хромосом) и дупликации (изменения некоторых участков хромосом). Они создают некий генетический резерв вида, обеспечивая эволюционному процессу свободу маневра, увеличивая количество генов с абсолютно новыми свойствами.

Видео по теме

Мутации могут быть генными, хромосомными или геномными. Все они в той или иной степени затрагивают генотип и сказываются на жизни организма или последующих поколений. Значительно повышают вероятность мутаций мутагенные факторы.

Генные мутации

Наиболее часто встречаются генные, или точечные, мутации. Они представляют собой замену в пределах одного гена на другой, «неправильный» нуклеотид. Такое бывает, когда во время редупликации ДНК перед делением клетки вместо комплементарного азотистого основания (аденин – тимин, гуанин – цитозин) к нуклеотиду «подстраивается» неправильное сочетание (например, аденин – цитозин или тимин – гуанин). Так появляются мутации, которые передаются следующим поколениям клеток, а если речь идет о половых клетках – гаметах – то и следующему поколению организмов. В большинстве случаев генные мутации приводят к неблагоприятным изменениям, ведь «испорченные» гены кодируют белки с искаженной структурой, которые не смогут выполнять свои функции в организме.

Хромосомные мутации

Когда затрагивает несколько генов в пределах хромосомы, такую называют хромосомной. Это может быть отрыв концевой части хромосомы (утрата), «вырезание» срединного фрагмента (делеция), удвоение участка (дупликация), разворачивание фрагмента на 180˚ (инверсия). При транслокации, являющейся также одним из видов хромосомных мутаций, участок хромосомы прикрепляется к другой, негомологичной ей.

Почему возникают хромосомные мутации

Хромосомные мутации обычно возникают в процессе деления клеток. При неравном кроссинговере, к примеру, одна из гомологичных хромосом может лишиться вообще каких-либо генов, а другая – приобрести «лишние».

Какие из хромосомных мутаций наиболее опасны

Самые опасные из хромосомных мутаций – делеция и утрата. Утрата концевой части 21-й хромосомы вызывает у человека развитие острого лейкоза – белокровия, что приводит к смертельному исходу. Последствия делеции варьируются от смерти и тяжелых наследственных заболеваний до отсутствия нарушений вообще (если утрачивается фрагмент, не несущий информации о свойствах организма).

Геномные мутации

Наиболее «масштабными» являются геномные мутации, когда в генотипе отсутствует какая-либо хромосома или наоборот присутствует лишняя. Такое может произойти при неправильном расхождении (или нерасхождении) хромосом при образовании гамет в мейозе. Так, нерасхождение 21-й хромосомы в яйцеклетке женщины в случае ее оплодотворения вызывает у ребенка синдром Дауна.

Что такое генная мутация и как происходит мутация?
Мутация гена является постоянным изменением в последовательности ДНК, которая составляет полный набор генов названный геном, так что после мутации в последовательности генов появляются отличия от геномов, которые можно найти в клетках большинства людей. Мутации имеют диапазон размеров; они могут изменить от одного гена до мутации значительной части хромосомы, которые содержат сотни генов.

Генные мутации могут быть классифицированы по двум основным направлениям:

Наследственные мутации наследуются от родителей и присутствуют на протяжении всей жизни человека практически в каждой клетке тела. Эти мутации также называют внутриутробной мутацией, потому что они присутствуют в яйцеклетке или спермотозоидах клеток родителей, которые также называются половыми клетками. Когда яйцо и сперматозоид соединяются, в результате оплодотворенная яйцеклетка получает ДНК от обоих родителей. Если эта ДНК содержит мутацию, ребенок, который растет из оплодотворенной яйцеклетки будут иметь мутацию в каждой из своих клеток.

Приобретенные (или соматические) мутации происходят в какой-то момент во время жизни человека и присутствуют только в некоторых клетках, таких мутаций нет в каждой клетке в теле. Эти изменения могут быть вызваны факторами окружающей среды, таких как ультрафиолетовое излучение от солнца или может произойти ошибка при копированнии ДНК во время клеточного деления. Приобретенные мутации в соматических клетках (кроме спермы и яйцеклеток) не могут быть переданы на следующем поколении.

De Novo (новые) мутации могут быть либо наследственными либо соматическими. В некоторых случаях, мутация происходит в яйцелетке или сперматозоиде человека, но не присутствует в других клетках человека. В редких случаях, мутация происходит в оплодотворенной яйцеклетки вскоре после того, яйцо и сперматозоиды объединяются. (в таких случаях часто невозможно точно сказать,в каком участке мутация произошла.) Когда оплодотворенная яйцеклетка начнет делится, каждая клетка растущего эмбриона будет иметь мутацию. Новые мутации могут объяснить генетические нарушения, при которых больной ребенок имеет мутацию в каждой клетке в теле, но родители не имели таких мутаций, и мутаций небыло в истории заболевания.

Соматические мутации , которые происходят в одной ячейке в начале эмбрионального развития могут привести к ситуации, называемой мозаичность. Эти генетические изменения не присутствует в яяцеклетках или сперматозоидах родителей, или в оплодотворенной яйцеклетки, но появляются немного позже, когда эмбрион уже начал деление и состоит из нескольких клеток. Так как все клетки делятся в процессе роста и развития, клетки, которые возникают из клетки с измененным мутацией геном будут иметь мутации, в то время как в других клетках таких мутаций не будут. В зависимости от масштабы мутации и сколько клеток подверглось мутации, мозаицизм может вызвать проблемы со здоровьем либо не затронуть здоровье вообще.

Большинство болезнетворных генных мутаций редко появляются в общей популяции вида. Тем не менее, другие генетические изменения происходят более часто. Генетические изменения, которые происходят более чем у 1 процента населения называют полиморфизмом. Они настолько часто встречаются, что сейчас их считают нормальными изменениями в ДНК. Полиморфизм несет ответственность за многие обычные различия между людьми, например, цвет глаз, цвет волос и тип крови.

Генные мутации - изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена а на т. Причины - нарушения при удвоении (репликации) ДНК

Генные мутации представляют собой молекулярные, не видимые в световом микроскопе изменения структуры ДНК. К мутациям генов относятся любые изменения молекулярной структуры ДНК, независимо от их локализации и влияния на жизнеспособность. Некоторые мутации не оказывают никакого влияния на структуру и функцию соответствующего белка. Другая (большая) часть генных мутаций приводит к синтезу дефектного белка, не способного выполнять свойственную ему функцию. Именно генные мутации обусловливают развитие большинства наследственных форм патологии.

Наиболее частыми моногенными заболеваниями являются у человека являются: муковисцидоз, гемохроматоз, адрено-генитальный синдром, фенилкетонурия, нейрофиброматоз, миопатии Дюшенна-Беккера и ряд других заболеваний. Клинически они проявляются признаками нарушений обмена веществ (метаболизма) в организме. Мутация может заключаться:

1) в замене основания в кодоне, это так называемая миссенсмутация (от англ, mis - ложный, неправильный + лат. sensus - смысл) - замена нуклеотида в кодирующей части гена, приводящая к замене аминокислоты в полипептиде;

2) в таком изменении кодонов, которое приведет к остановке считывания информации, это так называемая нонсенсмутация (от лат. non - нет + sensus - смысл) — замена нуклеотида в кодирующей части гена, приводит к образованию кодона-терминатора (стоп-кодона) и прекращению трансляции;

3) нарушении считывания информации, сдвиге рамки считывания, называемом фреймшифтом (от англ. frame - рамка + shift: - сдвиг, перемещение), когда молекулярные изменения ДНК приводят к изменению триплетов в процессе трансляции полипептидной цепи.

Известны и другие типы генных мутаций. По типу молекулярных изменений выделяют:

делении (от лат. deletio - уничтожение), когда происходит утрата сегмента ДНК размером от одного нуклеотида до гена;

дупликации (от лат. duplicatio - удвоение), т.е. удвоение или повторное дублирование сегмента ДНК от одного нуклеотида до целых генов;

инверсии (от лат. inversio - перевертывание), т.е. поворот на 180° сегмента ДНК размерами от двух нукпеотидов до фрагмента, включающего несколько генов;

инсерции (от лат. insertio - прикрепление), т.е. вставка фрагментов ДНК размером от одного нуклеотида до целого гена.

Молекулярные изменения, затрагивающие от одного до нескольких нуклеотидов, рассматривают как точечную мутацию.

Принципиальным и отличительным для генной мутации является то, что она 1) приводит к изменению генетической информации, 2) может передаваться от поколения к поколению.

Определенная часть генных мутаций может быть отнесена к нейтральным мутациям, поскольку они не приводят к каким-либо изменениям фенотипа. Например, за счет вырожденности генетического кода одну и ту же аминокислоту могут кодировать два триплета, различающихся только по одному основанию. С другой стороны, один и тот же ген может изменяться (мутировать) в несколько различающихся состояний.

Например, ген, контролирующий группу крови системы АВ0. имеет три аллеля: 0, А и В, сочетания которых определяют 4 группы крови. Группа крови системы АВ0 является классическим примером генетической изменчивости нормальных признаков человека.

Именно генные мутации обусловливают развитие большинства Ласледственных форм патологии. Болезни, обусловленные подобными мутациями, называют генными, или моногенными, болезнями, Т. е. заболеваниями, развитие которых детерминируется мутацией одного гена.

Геномные и хромосомные мутации

Геномные и хромосомные мутации являются причинами возникновения хромосомных болезней. К геномным мутациям относятся анеуплоидии и изменение плоидности структурно неизмененных хромосом. Выявляются цитогенетическими методами.

Анеуплоидия — изменение (уменьшение — моносомия, увеличение — трисомия) числа хромосом в диплоидном наборе, некратное гаплоидному (2n + 1, 2n - 1 и т.д.).

Полиплоидия — увеличение числа наборов хромосом, кратное гаплоидному (3n, 4n, 5n и т.д.).

У человека полиплоидия, а также большинство анеуплоидии являются летальными мутациями.

К наиболее частым геномным мутациям относятся:

трисомия — наличие трех гомологичных хромосом в кариотипе (например, по 21-й паре, при синдроме Дауна, по 18-й паре при синдроме Эдвардса, по 13-й паре при синдроме Патау; по половым хромосомам: XXX, ХХY, ХYY);

моносомия - наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона невозможно. Единственная моносомия у человека, совместимая с жизнью, - моносомия по Х-хромосоме - приводит (к синдрому Шерешевского-Тернера (45, Х0).

Причиной, приводящей к анеуплоидии, является нерасхождение хромосом во время клеточного деления при образовании половых клеток или утрата хромосом в результате анафазного отставания, когда во время движения к полюсу одна из гомологичных хромосом может отстать от всех других негомологичных хромосом. Термин «нерасхождение» означает отсутствие разделения хромосом или хроматид в мейозе или митозе. Утрата хромосом может приводить к мозаицизму, при котором имеется одна эуплоидная (нормальная) клеточная линия, а другая — моносомная .

Нерасхождение хромосом наиболее часто наблюдается во время мейоза. Хромосомы, которые в норме должны делиться во время мейоза, остаются соединенными вместе и в анафазе отходят к одному полюсу клетки. Таким образом, возникают две гаметы, одна из которых имеет добавочную хромосому, а другая не имеет этой хромосомы. При оплодотворении гаметы с нормальным набором хромосом гаметой с лишней хромосомой возникает трисомия (т. е. в клетке присутствует три гомологичные хромосомы), при оплодотворении гаметой без одной хромосомы возникает зигота с моносомией. Если моносомая зигота образуется по какой-либо аутосомной (не половой) хромосоме, то развитие организма прекращается на самых ранних стадиях развития.

Хромосомные мутации - это структурные изменения отдельных хромосом, как правило, видимые в световом микроскопе. В хромосомную мутацию вовлекается большое число (от десятков до нескольких сотен) генов, что приводит к изменению нормального диплоидного набора. Несмотря на то что хромосомные аберрации, как правило, не изменяют последовательность ДНК в специфических генах, изменение числа копий генов в геноме приводит к генетическому дисбалансу вследствие недостатка или избытка генетического материала. Различают две большие группы хромосомных мутаций: внутрихромосомные и межхромосомные.

Внутрихромосомные мутации — это аберрации в пределах одной хромосомы. К ним относятся:

делеции (от лат. deletio — уничтожение) - утрата одного из участков хромосомы, внутреннего или терминального. Это может обусловить нарушение эмбриогенеза и формирование множественных аномалий развития (например, деления в регионе короткого плеча 5-й хромосомы, обозначаемая как 5р-, приводит к недоразвитию гортани, порокам сердца, отставанию умственного развития). Этот симптомокомплекс известен как синдром «кошачьего крика», поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье;

инверсии (от лат. inversio — перевертывание). В результате двух точек разрывов хромосомы образовавшийся фрагмент встраивается на прежнее место после поворота на 180°. В результате нарушается только порядок расположения генов;

дупликации (от лат duplicatio — удвоение) — удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по одному из коротких плеч 9-й хромосомы обуслошшвает множественные пороки, включая микроцефалию, задержку физического, психического и интеллектуального развития).

Схемы наиболее частых хромосомных аберраций:
Делении: 1 - концевая; 2 - интерстициальная. Инверсии: 1 - перицентрическая (с захватом центромеры); 2 - парацентрическая (в пределах одного плеча хромосомы)

Межхромосомные мутации, или мутации перестройки — обмен фрагментами между негомологичными хромосомами. Такие мутации получили название транслокации (от лат. tгаns — за, через + locus — место). Это:

Реципрокная транслокация, когда две хромосомы обмениваются своими фрагментами;

Нереципрокная транслокация, когда фрагмент одной хромосомы транспортируется на другую;

- «центрическое» слияние (робертсоновская транслокация) - соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч.

При поперечном разрыве хроматид через центромеры «сестринские» хроматиды становятся «зеркальными» плечами двух разных хромосом, содержащих одинаковые наборы генов. Такие хромосомы называют изохромосомами. Как внутрихромосомные (делеции, инверсии и дупликации), так и межхромосомные (транслокации) аберрации и изохромосомы связаны с физическими изменениями структуры хромосом, в том числе с механическими разломами.

Наследственная патология как результат наследственной изменчивости

Наличие общих видовых признаков позволяет объединять всех людей на земле в единый вид Homo sapiens. Тем не менее мы без труда, одним взглядом выделяем лицо знакомого нам человека в толпе незнакомых людей. Чрезвычайное разнообразие людей — как внутри групповое (например, разнообразие в пределах этноса), так и межгрупповое — обусловлено генетическим их отличием. В настоящее время считается, что вся внутривидовая изменчивость обусловлена различными генотипами, возникающими и поддерживаемыми естественным отбором.

Известно, что гаплоидный геном человека содержит 3,3х10 9 пар нуклеотидных остатков, что теоретически позволяет иметь до 6-10 млн генов. Вместе с тем данные современных исследований свидетельствуют, что в геноме человека содержится примерно 30-40 тыс. генов. Около трети всех генов имеют более чем один аллель, т. е. являются полиморфными.

Концепция наследственного полиморфизма была сформулирована Э. Фордом в 1940 г. для объяснения существования в популяции двух или более различающихся форм, когда частота наиболее редкой из них не может быть объяснена только мутационными событиями. Поскольку мутация гена является редким событием (1х10 6), частоту мутантного аллеля, составляющую более 1%, можно объяснить только его постепенным накоплением в популяции за счет селективных преимуществ носителей данной мутации.

Многочисленность расщепляющихся локусов, многочисленность аллелей в каждом из них наряду с явлением рекомбинации создает неисчерпаемое генетическое разнообразие человека. Расчеты свидетельствуют, что за всю историю человечества на земном шаре не было, нет и в обозримом будущем не встретится генетического повторения, т.е. каждый рожденный человек является уникальным явлением во Вселенной. Неповторимость генетической конституции во многом определяет особенности развития заболевания у каждого конкретного человека.

Человечество эволюционировало как группы изолированных популяций, длительное время проживающих в одних и тех же условиях окружающей среды, включая климатогеографические характеристики, характер питания, возбудителей болезней, культурные традиции и т.д. Это привело к закреплению в популяции специфических для каждой из них сочетаний нормальных аллелей, наиболее адекватных условиям среды. В связи с постепенным расширением ареала обитания, интенсивными миграциями, переселением народов возникают ситуации, когда полезные в определенных условиях сочетания конкретных нормальных генов в других условиях не обеспечивают оптимальное функционирование некоторых систем организма. Это приводит к тому, что часть наследственной изменчивости, обусловленная неблагоприятным сочетанием непатологических генов человека, становится основой развития так называемым болезней с наследственным предрасположением.

Кроме того, у человека как социального существа естественный отбор со временем протекал во все более специфических формах, что также расширяло наследственное разнообразие. Сохранялось то, что могло отметаться у животных, или, наоборот, терялось то, что животные сохраняли. Так, полноценное обеспечение потребностей в витамине С привело в процессе эволюции к утере гена L-гулонодактоноксидазы, катализирующей синтез аскорбиновой кислоты. В процессе эволюции человечество приобретало и нежелательные признаки, имеющие прямое отношение к патологии. Например, у человека в процессе эволюции появились гены, определяющие чувствительность к дифтерийному токсину или к вирусу полиомиелита.

Таким образом, у человека, как и у любого другого биологического вида, нет резкой грани между наследственной изменчивостью, ведущей к нормальным вариациям признаков, и наследственной изменчивостью, обусловливающей возникновение наследственных болезней. Человек, став биологическим видом Homo sapiens, как бы заплатил за «разумность» своего вида накоплением патологических мутаций. Это положение лежит в основе одной из главных концепций медицинской генетики об эволюционном накоплении патологических мутации в популяциях человека.

Наследственная изменчивость популяций человека, как поддерживаемая, так и уменьшаемая естественным отбором, формирует так называемый генетический груз.

Некоторые патологические мутации могут в течение исторически длительного времени сохраняться и распространяться в популяциях, обусловливая гак называемый сегрегационный генетический груз; другие патологические мутации возникают в каждом поколении как результат новых изменений наследственной структуры, создавая мутационный груз.

Отрицательный эффект генетического груза проявляется повышенной летальностью (гибель гамет, зигот, эмбрионов и детей), снижением фертильности (уменьшенное воспроизводство потомства), уменьшением продолжительности жизни, социальной дизадаптацией и инвалидизацией, а также обусловливает повышенную необходимость в медицинской помощи.

Английский генетик Дж.Ходдейн был первым, кто привлек внимание исследователей к существованию генетического груза, хотя сам термин был предложен Г. Меллером еще в конце 40-х гг. Смысл понятия «генетический груз» связан с высокой степенью генетической изменчивости, необходимой биологическому виду для того, чтобы иметь возможность приспосабливаться к изменяющимся условиям среды.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: