Creativenn - Портал рукоделия

Требования, предъявляемые к качеству воды, могут быть самыми различными и определяются её целевым назначением. Для оценки качества пластовых, природных и сточных вод их образцы подвергают анализу. На основании результатов анализа делаются выводы о пригодности воды для конкретного вида потребления, возможности применения тех или иных методов очистки. Анализы подземных вод позволяют прогнозировать сопутствующие месторождения полезных ископаемых. При анализе вод для характеристики их свойств определяют химические, физические и бактериологические показатели. Основными показателями, определяющими пригодность воды для определенной отрасли народного хозяйства, являются химические, так как физические (содержание взвешенных частиц, температура, цвет, запах, плотность, сжимаемость, вязкость, поверхностное натяжение) и бактериологические (наличие бактерий) показатели зависят от химического состава воды.

К химическим показателям качества воды относятся:

    жесткость;

    окисляемость;

    реакция среды;

    солевой состав;

    состав растворенных газов.

Общее солесодержание характеризует присутствие в воде минеральных и органических примесей, количество этих примесей в виде общей минерализации, сухого и плотного остатков. Общая минерализация представляет собой сумму всех найденных в воде анализом катионов и анионов. Минерализацию выражают в миллиграмм-эквивалентах солей, находящихся в I л воды, или в процентах, то есть числом граммов растворенных веществ, содержащихся в 100 г раствора. Сухим остатком называется суммарное количество нелетучих веществ, присутствующих в воде во взвешенном, коллоидном и растворенном состоянии, выраженное в мг/л. Сухой остаток определяют путем выпаривания пробы воды, последующего высушивания при 105 о С и взвешивания. Плотный остаток – это сухой остаток, определенный из профильтрованной пробы воды. Следовательно, разница двух показателей соответствует содержанию взвешенных веществ пробы. Если сухой остаток прокалить при температуре 500-600 о С, то масса его уменьшится и получится остаток, называемый золой. Уменьшение массы происходит за счет сгорания органических веществ, удаления кристаллизационной воды, разложения карбонатов. Потери при прокаливании приближенно относят за счет органических примесей.

Жесткость воды обусловливается наличием в ней ионов Са 2+ и Mg 2+ . Для большинства производств жесткость воды является основным показателем её качества. В жесткой воде плохо пенится мыло. При нагревании и испарении жесткой воды образуется накипь на стенках паровых котлов, труб, теплообменных аппаратов, что ведет к перерасходу топлива, коррозии металлов и авариям.

Жесткость количественно выражается числом миллиграмм-эквивалентов ионов кальция и магния в 1 л воды (мг-экв/л); 1 мг-экв/л жесткости соответствует содержанию в воде 20,04 мг/л ионов Са 2+ или

12,16 мг/л ионов Mg 2 + . Различают жесткость общую, карбонатную и некарбонатную.

Карбонатная жесткость связана с присутствием в воде в основном гидрокарбонатов и карбонатов кальция и магния, которые при кипячении воды переходят в нерастворимые средние или основные соли и выпадают в виде плотного осадка:

Ca(HCO 3 )=CaCO 3 ↓+H 2 O+CO 2

2Mg(HCO 3 ) 2 =(MgOH) 2 CO 3 ↓+3CO 2 +H 2 O

Таким образом, при кипячении карбонатная жесткость устраняется. Поэтому она называется также временной жесткостью. Следует сказать, что при переходе HCO 3 – в CO 3 2 – и при выпадении карбонатов кальция и магния в воде остается некоторое количество ионов Са 2+ , Mg 2+ , CO 3 2 – , соответствующее произведению растворимости СаСО 3 и (MgOH ) 2 CO 3 . В присутствии посторонних ионов растворимость этих соединений повышается.

Некарбонатная (постоянная) жесткость не разрушается кипячением. Она обусловливается присутствием в воде кальциевых и магниевых солей сильных кислот, главным образом сульфатов и хлоридов.

Общая жесткость воды представляет собой сумму карбонатной и некарбонатной жесткости и обусловливается суммарным содержанием в воде растворенных солей кальция и магния. По величине общей жесткости принята следующая классификация природных вод:

очень мягкие (<1,5 мг-экв/л), мягкие (1,5-3,0 мг-экв/л), средней жесткости (3,0-5,4 мг-экв/л), жесткие (5,4-10,7 мг-экв/л), очень жесткие (>10,7 мг-экв/л).

Если известны концентрации (мг/л) в воде Ca 2+ , Mg 2+ и HCO 3 – , то жесткость рассчитывается по следующим формулам:

Общая жесткость

Карбонатная жесткость равна концентрации (мг/л) [HCO 3 ]; в случае, если содержание ионов кальция и магния в воде выше, чем количество гидрокарбонатов:

, где 61,02 – эквивалентная масса иона HCO 3 – .

Если же количество гидрокарбонатов в воде превышает содержание ионов кальция и магния, то карбонатная жесткость соответствует общей жесткости. Разность между общей и карбонатной жесткостью составляет некарбонатную жесткость: Ж НК = Ж О – Ж К . Следовательно, Ж НК – это содержание Ca 2+ и Mg 2 + , эквивалентное концентрации всех остальных анионов, в том числе и некомпенсированных гидрокарбонатов.

Окисляемость характеризует содержание в воде восстановителей, к которым относятся органические и некоторые неорганические (сероводород, сульфиты, соединения двухвалентного железа и др.) вещества. Величина окисляемости определяется количеством затраченного окислителя и выражается числом миллиграммов кислорода, необходимого для окисления веществ, содержащихся в 1 л воды. Различают общую и частичную окисляемость. Общую окисляемость определяют обработкой воды сильным окислителем – бихроматом калия K 2 Cr 2 O 7 или йодатом калия KIO 3 . Частичную окисляемость определяют по реакции с менее сильным окислителем – перманганатом калия К MnO 4 . По этой реакции окисляются только сравнительно легко окисляющиеся вещества.

Для полного окисления содержащихся в воде органических веществ, при котором происходят превращения по схеме

[C]→CO 2

[H]→H 2 O

[P]→P 2 O 5

[S]→SO 3

[ N ]→ NH 4 + ,

требуется количество кислорода (или окислителя в расчете на кислород), называемое химическим потреблением кислорода (ХПК) и выражаемое в мг/л.

При любом методе определения ХПК вместе с органическими веществами окисляются и неорганические восстановители, содержащиеся в пробе. Тогда содержание неорганических восстановителей в пробе определяют отдельно специальными методами и результаты этих определений вычитают из найденного значения ХПК.

Реакция среды характеризует степень кислотности или щелочности воды. Концентрация водородных ионов природных вод зависит главным образом от гидролиза солей, растворенных в воде, количества растворенных угольной кислоты и сероводорода, содержания различных органических кислот. Обычно для большинства природных вод величина рН изменяется в пределах 5,5-8,5. Постоянство рН природных вод обеспечивается наличием в ней буферных смесей. Изменение значения рН свидетельствует о загрязнении природной воды сточными водами.

Солевой состав. При анализе природных вод определяют содержание в них преимущественно главных ионов: Cl , SO 4 2– , HCO 3 , CO 3 2– , Ca 2+ , Mg 2+ , K + , Na + .

Определение иона Cl . В основу определения иона хлора положен аргентометрический метод Мора. Принцип анализа заключается в том, что при прибавлении к воде раствора AgNO 3 образуется белый осадок хлорида серебра:

Cl + Ag + = AgCl↓

Определение хлорид-ионов ведут в интервале рН = 6,5 ÷ 10, чтобы одновременно с AgCl не выпадал осадок Ag 2 CO 3 . Проведению определения Сl мешает наличие в воде ионов брома, йода, сероводорода, от которых освобождаются предварительной обработкой воды.

Определение иона SO 4 2– . Метод определения сульфат-ионов основан на малой растворимости сульфата бария, количественно выпадающего в кислой среде при добавлении к воде раствора хлорида бария: Ba 2+ + SO 4 2– = BaSO 4

По массе образовавшегося осадка рассчитывают содержание иона SO 4 2– .

Определение ионов CO 3 2– и HCO 3 . Эти ионы определяют титрованием пробы воды растворами серной или соляной кислот последовательно с индикаторами фенолфталеином и метилоранжем. Реакция нейтрализации протекает в две стадии.

Первые порции кислоты вступают в реакции с карбонат-ионом, образуя гидрокарбонат-ион:

CO 3 2– + H + = HCO 3

Окраска фенолфталеина при рН = 8,4 переходит из розовой в бесцветную, что совпадает с таким состоянием раствора, когда в нем остаются лишь гидрокарбонаты. По количеству кислоты, пошедшей на титрование, рассчитывают содержание карбонат-иона. Расход кислот на титрование с фенолфталеином эквивалентен содержанию половины карбонатов, т.к. последние нейтрализуются только наполовину до HCO 3 – . Поэтому общее количество CO 3 2 – эквивалентно удвоенному количеству кислоты, затраченной на титрование. При дальнейшем титровании в присутствии метилоранжа происходит реакция нейтрализации гидрокарбонатов:

HCO 3 + H + → CO 2 + H 2 O

Метилоранж меняет окраску при pH = 4,3, т.е. в момент, когда в растворе остается только свободный диоксид углерода.

При расчете содержания ионов HCO 3 – в воде следует из количества кислоты, пошедшей на титрование с метилоранжем, вычесть количество кислоты, идущей на титрование с фенолфталеином. Общее количество кислоты, затраченной на нейтрализацию ионов ОН , СО 3 2– и НСО 3 , характеризует общую щелочность воды. Если рН воды ниже 4,3, то её щелочность равна нулю.

Определение ионов Ca 2+ , Mg 2+ . Имеется несколько методов обнаружения и определения содержания ионов Са 2+ и Mg 2+ . При добавлении в воду оксалата аммония (NH 4 ) 2 C 2 O 4 в случае присутствия ионов кальция образуется белый осадок оксалата кальция:

Ca 2+ + C 2 O 4 2– = CaC 2 O 4

После отделения осадка оксалата кальция в воде можно определить ионы Mg 2+ с помощью раствора гидрофосфата натрия Na 2 HPO 4 и аммиака. При наличии иона Mg 2 + образуется мелкокристаллический осадок соли магния:

Mg 2+ + HPO 4 2– + NH 3 = MgNH 4 PO 4

Полученные осадки прокаливают и взвешивают. На основании полученных результатов вычисляется величина кальциевой и магниевой жесткости.

Наиболее быстрым и точным методом определения Са 2 + и Mg 2 + является комплексонометрический метод, основанный на способности двунатриевой соли этилендиаминотетрауксусной кислоты (трилон Б)

NaOOCCH 2 CH 2 COONa

N––CH 2 ––CH 2 ––N

HOOCCH 2 CH 2 COOH

образовывать с ионами кальция и магния прочные комплексные соединения.

При титровании пробы воды трилоном Б происходит последовательное связывание в комплекс сначала ионов кальция, а затем ионов магния. Содержание ионов кальция определяют, титруя воду в присутствии индикатора - мурексида. Мурексид образует с ионами кальция малодиссоциированное комплексное соединение, окрашенное в малиновый цвет.



Ионы магния не дают комплекса с мурексидом. Трилон Б извлекает Са 2+ из его растворимого комплекса с мурексидом, вследствие чего окраска раствора, изменяется на сиреневую:



По количеству трилона Б, расходуемого на титрование, определяют содержание Са 2 + . Титрованием пробы воды трилоном Б в присутствии индикатора хромогена черного определяют суммарное содержание Са 2 + и Mg 2 + , то есть общую жесткость воды. Вода, содержащая Са 2 + и Mg 2 + , в присутствии хромогена черного окрашивается в красный цвет вследствие образования комплекса с Mg 2 + . При титровании воды в точке эквивалентности происходит изменение цвета на синий вследствие протекания следующей реакции:



Содержание Mg 2+ вычисляют по разности между общим содержанием (Са 2+ + Mg 2+ ) и содержанием Са 2 + . Трилонометрическое определение каждого иона производится при том значении рН, при котором этот ион образует с трилоном Б соединение более прочное, чем с индикатором. Для поддержания заданного значения рН к титруемому раствору добавляют буферные растворы. Кроме того, поддержание заданной величины рН обеспечивает определенную окраску индикатора. Общую жесткость воды определяют при рН > 9, кальциевую – при рН = 12.

Определение ионов Na + , K + . Производится вычислением по разности между суммой мг-экв найденных анионов и катионов, поскольку вода электронейтральна:

rNa + + rK + + rCa 2+ + rMg 2+ = rCO 3 2- + rHCO 3 + rSO 4 2 + rCl

rNa + + rK + = rCO 3 2– + rHCO 3 + rSO 4 2 + rCl – rCa 2+ – rMg 2+

С достаточно высокой точностью все присутствующие в воде катионы можно определить эмиссионной спектроскопией сухого остатка.

Растворенные в воде газы определяют химическими методами или газовой хроматографией.

Определение диоксида углерода производят титрованием пробы воды щелочью в присутствии индикатора–фенолфталеина:

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O

Определение растворенного кислорода производится йодометрическим методом.

Для анализа в пробу воды поcледовательно добавляют раствор хлорида марганца и щелочной раствор йодида калия. Метод основан на окислении свежеполученного гидроксида двухвалентного марганца содержащимся в воде кислородом:

MnCl 2 + 2NaOH = Mn(OH) 2 + 2NaCl

2Mn(OH) 2 + O 2 = 2MnO(OH) 2

Количество образовавшегося в воде бурого осадка гидроксида четырехвалентного марганца эквивалентно количеству растворенного кислорода. При последующем добавлении к пробе соляной или серной кислоты четырехвалентный марганец вновь восстанавливается до двухвалентного, окисляя при этом йодид калия. Это приводит к выделению свободного йода, эквивалентного содержанию четырехвалентного марганца, или, что то же самое, растворенного кислорода в пробе:

MnO(OH) 2 + 2KI + 4HCl→MnCl 2 + 2KCl + 3H 2 O + I 2

Выделившийся свободный йод определяется количественно путем титрования раствором тиосульфата натрия:

I 2 + 2Na 2 S 2 O 3
2NaI + Na 2 S 4 O 6

Йодометрический метод определения растворенного кислорода неприменим для вод, содержащих сероводород, так как сероводород вступает во взаимодействие с йодом и занижает результат. Во избежание этой ошибки предварительно связывают содержащийся в пробе сероводород в соединение, не препятствующее нормальному течению реакции. Для этой цели обычно используют хлорид ртути (II):

H 2 S + HgCl 2 = HgS↓ + 2HCl

Определение H 2 S . Прежде чем приступить к количественному определению сероводорода, определяют его качественное присутствие по характерному запаху. Более объективным качественным показателем служат свинцовые индикаторные бумажки (фильтровальная бумага, пропитанная раствором ацетата свинца). При опускании в воду, содержащую сероводород, свинцовая бумага темнеет, принимая желтую (малое содержание), бурую (среднее содержание) или темно-коричневую (высокое содержание) окраску.

В водных растворах сероводород присутствует в трех формах: недиссоциированный H 2 S , в виде ионов HS и S 2 – . Относительные концентрации этих форм в воде зависят от рН этой воды и в меньшей степени от температуры и общего солесодержания.

Если анализируемая вода не содержит веществ, реагирующих с иодом, то сероводород и его ионы можно определить следующим образом.

В основе количественного метода определения H 2 S лежит реакция окисления сероводорода йодом:

H 2 S + I 2 = 2HI + S↓

К точно отмеренному подкисленному раствору йода, взятого в избытке по отношению к ожидаемому содержанию сероводорода, прибавляют определенное количество воды. Количество йода, израсходованное на окисление сероводорода, определяется обратным титрованием остатка йода тиосульфатом. Разница между количеством раствора тиосульфата, соответствующим всему количеству взятого для анализа йода, и количеством этого же раствора, затраченного на титрование остатка йода в пробе, эквивалентна содержанию сероводорода в исследуемой пробе.

  • КХА вод. МВИ массовой концентрации ионов рения (VII) в питьевых, минеральных, природных (включая подземные и скважинные), морских и очищенных сточных водах методом переменнотоковой вольтамперометрии на анализаторе “ЭКОТЕСТ-ВА-4”

    МВИ
  • РЦэм 58-02 МКХА хозяйственно-бытовых и поверхностных вод на содержание диметилформамида методом газовой хроматографии
    Методика количественного химического анализа
  • КХА вод. МВИ массовой концентрации формальдегида в пробах питьевых и природных вод методом ВЭЖХ (Взамен нее внесена ФР.1.31.2013.13910)
    Методика количественного химического анализа
    МВИ
  • МКХА Воды сточные. Гравиметрический метод определения нефтепродуктов. N30-14-04-23
    Методика количественного химического анализа
  • Количественный химический анализ вод. Методика измерений массовой концентрации триэтиленгликоль-ди-(2-этилгексаноата) методом газовой хроматографии в сточных водах производства поливинилбутиральной пленки. МКХА МБУ ИЭС 001-16
    Методика количественного химического анализа
  • КХА. МВИ биохимического потребления кислорода в природных и сточных водах по изменению давления газовой фазы (манометрический метод)
    Методика количественного химического анализа
    МВИ
  • МКХА-ИХАВП-01-2012 Методика измерений содержания фторид-ионов, хлорид-ионов, нитрит-ионов, нитрат-ионов, фосфат-ионов, сульфат-ионов в пробах питьевых, природных, талых вод, почв, грунтов, донных отложений, отходов производства (бурового шлама) методом ионной хроматографии
    Методика количественного химического анализа
  • МВИ N 46-381-2010 Методы контроля. КХА. Железо хлорное (водный раствор). Массовая доля кислоты соляной. Методика измерений методом потенциометрического титрирования
    Методика количественного химического анализа
    МВИ
  • МКХА Определение массовой концентрации фтора в природных и сточных водах потенциометрическим методом
    Методика количественного химического анализа
  • МКХА "Никель (II) сернокислый 7-водный. Никель (II) сернокислый 6-водный. Определение массовой доли никеля титриметрическим методом
    Методика количественного химического анализа
  • Методика 46-380-2010 Методы контроля. КХА. Железо хлорное (водный раствор), выпускаемое по СТО 00203275-228-2009. Массовая доля нерастворимых в воде веществ. Методика измерений гравиметрическим методом
    Методика количественного химического анализа №46-380-2010
  • Методика измерений водородного показателя (рН) водных вытяжек почв, грунтов, донных отложений, отходов производства (бурового шлама) потенциометрическим методом. рН-01-2017
    Методика количественного химического анализа
  • Методика измерений массовой концентрации хлороформа в пробах воды плавательных бассейнов методом газожидкостной хроматографии. ГХВБ-01-2017
    Методика количественного химического анализа
  • Методика измерений массовых концентраций фенола и алкилфенолов в пробах питьевых, природных, талых, сточных и очищенных сточных вод методом высокоэффективной жидкостной хроматографии. ФВ-03-2017
    Методика количественного химического анализа
  • КХА вод. Методика измерений массовой концентрации железа (II) в питьевых, природных и сточных водах фотометрическим методом с о-фенантролином ПНД Ф 14.1:2:4.259-10 НДП 20.1:2:3.106-09
    Методика количественного химического анализа
    ПНД Ф
  • КХА вод. МВИ массовой концентрации ацетат-ионов в пробах природных и сточных вод методом капиллярного электрофореза аннулирована письмом N5/174 от 20.07.09 Взамен нее ФР.1.31.2009.06202
    Методика количественного химического анализа
    МВИ

Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

Отправить

Вода из скважины или колодца не всегда пригодна для питья. Чтобы выяснить, можно ли готовить на такой воде, требуется провести химический анализ воды. Полный химический анализ воды может потребоваться также для изучения качество водопроводной или родниковой воды, а также в научных целях и в рамках экологического мониторинга.

Во время анализа представленные образцы исследуют на наличие различных загрязнений: растворенных веществ, нерастворимых соединений, бактерий и простейших. Кроме того, можно исследовать радиоактивность воды. По результатам, лаборанты выносят вердикт – можно ли употреблять воду в пищу, насколько она пригодна для бытовых целей, какие загрязнители содержит.

Забор образца

Отправляя пробы на физико-химический анализ воды, необходимо помнить, что существуют правила забора образцов:

  • Нужно подготовить чистую тару – подойдет бутыль, в которой до этого была негазированная чистая питьевая вода.
  • Перед наполнением тару рекомендуется промыть – можно той же жидкостью, которая предназначена для сбора.

Правила разработаны для каждого источника. Так, для сбора из водопроводного крана алгоритм такой:

  • Открыть кран не менее чем на 10 минут на среднем напоре.
  • Наполнить бутылку, стараясь не допускать появления пузырьков воздуха.

Для скважины правила похожие:

  • Открыть кран не менее чем на 10 минут, поддерживать средний напор.
  • В случае если скважина была заброшена или использовалась редко, то необходимо откачать верхний слой насосом – не менее 2 часов.

Правила для точного анализа:

  • Пробу из колодца набирают с глубины в 4 метра. Ведро должно быть чистым.
  • Иногда для полного анализа скважины может потребоваться придонная вода – ее собирают так, чтобы исключить попадание ила и песка.
  • При заборе пробы в бутылку, ее нужно наполнять медленно.
  • Сразу после забора, тару необходимо плотно закрыть.
  • Лучше всего отдавать образцы сразу. Если такой возможности нет – правильный образец можно хранить в холодильнике до 2 суток.

Пробу отдают вместе с сопроводительным листком. На нем указывают:

  • Юридический и фактический адрес источника.
  • Тип источника.
  • Точную дату и время забора пробы.
  • Нуждается ли вода в срочной диагностике.

Чем лучше собрана проба – тем точнее будут результаты исследования.

Показания для анализа

Как узнать, нужны ли исследования? Если спросить специалиста, то гигиенист скажет, что проводить такой анализ лучше всего регулярно – даже если кажется, что не происходит никаких изменений.

Но есть ситуации, в которых проверка качества воды не просто рекомендована, но очень желательна:

  1. Если заметно изменились цвет, запах или вкус. В таком случае отправить пробу на экспертизу стоит как можно раньше. А до тех пор воздержаться от питья. Это особенно актуально для городских жителей – вода из подземных источников часто меняет цвет в зависимости от количества атмосферных осадков.
  2. Если рядом со скважиной или колодцем велось строительство. Особенно опасны строительные работы на промышленных объектах. Микрочастицы самых разных токсичных веществ попадают воду. Если водоем не проточный – они задержатся надолго.
  3. При покупке участка рядом с оживленной трассой стоит проверить качество питьевой воды из колодца.
  4. После аварийных ситуаций на производствах в районе скважины. Анализ требуется, чтобы убедиться, что в почву, а значит, и в воду не попади токсичные отходы производства.
  5. При выборе фильтра для домашнего использования – чтобы знать, что именно требуется отфильтровать. Многие компании, предлагающие услуги по установке фильтров под ключ, сразу же предлагают провести анализ. Стоит исследовать воду и после установки фильтра – через несколько месяцев – чтобы убедиться, что оборудование работает должным образом.

Существуют ситуации, в которых проверка предусмотрена федеральным законодательством:

  • Регулярно – в медицинских, детских и оздоровительных учреждениях.
  • На производстве бутилированной питьевой воды.
  • При открытии новых веток трубопровода.
  • На промышленных предприятиях – обязательная экспертиза сточных вод.

Подобные требования содержатся в Водном Кодексе РФ, а также в проекте ФЗ «О водоснабжении» и действующем ФЗ «О санитарно-эпидемиологическом благополучии населения».

Нормативы

Основные типы нормативных документов, устанавливающих требования к качеству на территории России:

  1. СанПиН – санитарно-токсикологические и органолептические показатели.
  2. Гигиенические критерии.
  3. Эпидемиологические нормативы.
  4. Медицинские критерии оценки качества.
  5. Госстандарты для производства.
  6. Технические условия.
  7. Справочники ПДК.

Такое большое количество стандартов легко объяснимо – ведь вред от использования в пищевых целях воды ненадлежащего качества может быть очень серьезным.

Водопроводная вода

При оценке качества с помощью химико-физических методов оценивают следующие показатели:

  • pH (норма находится в пределах от 6 до 9).
  • минерализация (норма составляет не более 1000 мг на литр).
  • Содержание отдельных химических элементов – для каждого установлен максимальный порог.
  • Фенольный индекс.

Помимо этого проводится микробиологическая оценка безопасности, оценивают органолептические свойства, содержание некоторых классов органических соединений.

Бутилированная продукция

Бутилированные воды делят на две основные категории – высшая и первая.Продукт обеих категорий обязан соответствовать стандартам качества и безопасности, прописанным в СанПиНе. Отличие в том, что продукт высшей категории может добываться только из сертифицированных природных источников, защищенных от загрязнений любого характера.

Количественный химический анализ оценивает содержание:

  • Солей.
  • Газа.
  • Органических примесей.

Также оценивают:

  • Общий химический состав.
  • Микробиологические параметры.
  • Радиационные показатели.
  • Наличие токсичных металлов.

Проведение экспертизы строго регламентировано – существуют методические рекомендации для сотрудников лабораторий оценки качества.

Естественные источники

Естественные источники – это:

  • Колодцы и скважины.
  • Реки и ручьи.
  • Озера и водохранилища.
  • Родники.

Исследование открытых источников затруднено, так как их химический состав постоянно меняется – вместе с изменением погоды, времени года и уровнем атмосферных осадков. Существуют индивидуальные нормативы для каждого открытого источника. Наиболее строгие нормативы действуют в отношении родников, скважин и колодцев – вода из них часто используется для питья без дополнительной обработки.

Исследование качества

Методы химического анализа воды:

  • Качественный.
  • Количественный химический анализ воды.

Качественный позволяет установить присутствие в растворе каких-либо веществ. А количественный – их содержание.

Для определения качества стоит обратиться в местную экспертную организацию или в филиал СЭС. Как правило, специалисты не просто проводят анализ, но также выдают рекомендации по улучшению качества.

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ
В СФЕРЕ ПРИРОДОПОЛЬЗОВАНИЯ

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ МАССОВОЙ
КОНЦЕНТРАЦИИ НИТРАТ-ИОНОВ В ПИТЬЕВЫХ,
ПОВЕРХНОСТНЫХ И СТОЧНЫХ ВОДАХ
ФОТОМЕТРИЧЕСКИМ МЕТОДОМ
С САЛИЦИЛОВОЙ КИСЛОТОЙ

ПНД Ф 14.1:2:4.4-95

Методика допущена для целей государственного
экологического контроля

МОСКВА 1995 г.
(издание 2011 г.)

Методика рассмотрена и одобрена федеральным бюджетным учреждением «Федеральный центр анализа и оценки техногенного воздействия (ФБУ «ФЦАО»).

Разработчик :

«Федеральный центр анализа и оценки техногенного воздействия» (ФБУ «ФЦАО»)

1 ВВЕДЕНИЕ

Настоящий документ устанавливает методику измерений массовой концентрации нитрат-ионов и питьевых, поверхностных и сточных водах фотометрическим методом.

Диапазон измерений от 0,1 до 100 мг/дм 3

Если массовая концентрация нитрат-ионов в анализируемой пробе превышает 10 мг/дм 3 , то пробу необходимо разбавлять.

Мешающие влияния, обусловленные присутствием взвешенных, окрашенных органических веществ, хлоридов в количествах, превышающих 200 мг/дм 3 , нитритов при содержании свыше 2,0 мг/дм 3 , железа при массовых концентрациях более 5,0 мг/дм 3 , устраняются специальной подготовкой пробы (п. 9.1).

2 ПРИПИСАННЫЕ ХАРАКТЕРИСТИКИ ПОКАЗАТЕЛЕЙ ТОЧНОСТИ ИЗМЕРЕНИЙ

Значения показателя точности измерений 1 - расширенной относительной неопределенности измерений по настоящей методике при коэффициенте охвата 2 приведены в . Бюджет неопределенности измерений приведен в .

1 В соответствии с ГОСТ Р 8.563-2009 (п. 3.4) в качестве показателя точности измерений использованы показатели неопределенности измерений).

Таблица 1 - Диапазон измерений, показатели неопределенности измерений

Суммарная стандартная относительная неопределенность, и , %

Расширенная относительная неопределенность 2 , U при коэффициенте охвата k = 2, %

От 0,1 до 3 включ.

Св. 3 до 100 включ.

Сточные воды

От 0,1 до 1 включ.

Св. 1 до 3 включ.

Св. 3 до 100 включ.

2 Соответствует характеристике погрешности при доверительной вероятности Р = 0,95.

Значения показателя точности методики используют при:

Оформлении результатов измерений, выдаваемых лабораторией;

Оценке качества проведения испытаний в лаборатории;

Оценке возможности использования настоящей методики в конкретной лаборатории.

3 СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ, РЕАКТИВЫ И МАТЕРИАЛЫ

При выполнении измерений должны быть применены следующие средства измерений, оборудование, реактивы и материалы.

3.1 Средства измерений

Фотоэлектроколориметр или спектрофотометр любого типа, позволяющий измерять оптическую плотность при l = 410 нм.

Кюветы с длиной поглощающего слоя 20 мм.

Весы лабораторные специального класса точности с ценой деления не более 0,1 мг, наибольшим пределом взвешивания не более 210 г, ГОСТ Р 53228-2008 .

Государственные стандартные образцы (ГСО) состава раствора нитрат-ионов с массовой концентрацией 1 мг/дм 3 . Относительная погрешность аттестованных значений массовой концентрации не более 1 % при Р = 0,95.

Колбы мерные наливные 2-50-2, 2-100-2, 2-1000-2, ГОСТ 1770-74 .

Пипетки 4(5)-2-1, 4(5)-2-2, 6(7)-2-5, 6(7)-2-10, ГОСТ 29227-91 .

Стаканчики для взвешивания СВ, ГОСТ 25336-82 .

Стаканы термостойкие В-1-1000, В-1-100, ТС, ГОСТ 25336-82 .

Пробирки колориметрические П-2-10-0,1 ХС ГОСТ 1770-74 .

3.2 Вспомогательное оборудование, материалы

Шкаф сушильный лабораторный с температурой нагрева до 130 °С.

Баня водяная, ТУ 10-23-103.

Чашки выпарительные фарфоровые, ГОСТ 9147-80 .

Фильтры обеззоленные, ТУ 6-09-1678-95.

Бутыли из полимерного материала или стекла с притертыми или винтовыми пробками вместимостью 500 - 1000 см 3 для отбора и хранения проб.

Примечани я.

1 Допускается использование других средств измерений утвержденных типов, обеспечивающих измерения с установленной точностью.

2 Допускается использование другого оборудования с метрологическими и техническими характеристиками, аналогичными указанным.

3 Средства измерений должны быть поверены в установленные сроки.

3.3 Реактивы

Калий азотнокислый, ГОСТ 4217-77 .

Калий двухромовокислый, ГОСТ 4220-75 .

Квасцы алюмоаммонийные, ГОСТ 4238-77 .

Квасцы алюмокалиевые, ГОСТ 4329-77 .

Активированный уголь, БАУ-Э, ТУ 6-16-3075.

Аммиак водный, ГОСТ 3760-79 .

Аммоний сернокислый, ГОСТ 3769-78 .

Спирт этиловый, ГОСТ 18300-87 .

Салициловая кислота, ГОСТ 624-70 .

Натрий салициловокислый, ГОСТ 17628-72 .

Серная кислота, ГОСТ 4204-77 .

Натрия гидроокись, ГОСТ 4328-77 .

Калий-натрий виннокислый 4-водный (Сегнетова соль) ГОСТ 5845-79 .

Серебро сернокислое ТУ 6-09-3703-74.

Вода дистиллированная ГОСТ 6709-72 .

Примечани я.

1 Все реактивы, используемые для измерений, должны быть квалификации ч.д.а. или х.ч.

2 Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных.

4 МЕТОД ИЗМЕРЕНИЙ

Фотометрический метод определения массовой концентрации нитрат-ионов основан на взаимодействии нитрат-ионов с салициловой кислотой с образованием желтого комплексного соединения.

Оптическую плотность раствора измеряют при l = 410 нм в кюветах с длиной поглощающего слоя 20 мм.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ, ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ

При выполнении измерений необходимо соблюдать следующие требования техники безопасности.

5.1 При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76 .

5.2 Электробезопасность при работе с электроустановками по ГОСТ Р 12.1.019-2009 .

5.3 Организация обучения работающих безопасности труда по ГОСТ 12.0.004-90 .

5.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83 .

6 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВ

Выполнение измерений может производить химик-аналитик, владеющий техникой фотометрического анализа, изучивший инструкцию по эксплуатации спектрофотометра или фотоколориметра и получивший удовлетворительные результаты при выполнении контроля процедуры измерений.

7 ТРЕБОВАНИЯ К УСЛОВИЯМ ИЗМЕРЕНИЙ

Измерения проводятся в следующих условиях:

Температура окружающего воздуха (20 ± 5) °С;

Относительная влажность не более 80 % при t = 25 °C;

Атмосферное давление (84 - 106) кПа (630 - 800 мм рт.ст);

Частота переменного тока (50 ± 1) Гц;

Напряжение в сети (220 ± 10) В.

8 ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

При подготовке к выполнению измерений должны быть проведены следующие работы: подготовка посуды для отбора проб, отбор проб, подготовка прибора к работе, приготовление вспомогательных и градуировочных растворов, градуировка прибора, установление и контроль стабильности градуировочной характеристики.

8.1 Подготовка посуды для отбора проб

Бутыли для отбора и хранения проб воды обезжиривают раствором CMC, промывают водопроводной водой, хромовой смесью, опять водопроводной водой, а затем 3 - 4 раза дистиллированной водой.

8.2 Отбор и хранение проб

Отбор проб питьевых вод производится в соответствии с требованиями ГОСТ Р 51593-2000 «Вода питьевая. Отбор проб».

Отбор проб поверхностных и сточных вод производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб», ПНД Ф 12.15.1-08 «Методические указания по отбору проб для измерений сточных вод».

Пробы воды (объем не менее 200 см 3) отбирают в бутыли из полимерного материала или стекла, предварительно ополоснутые отбираемой водой.

Если определение нитрат-ионов производят в день отбора пробы, то консервирование не требуется.

Если проба не будет проанализирована в день отбора, то ее консервируют добавлением концентрированной серной кислоты (на 1 дм 3 воды - 1 см 3 H 2 SO 4 конц.). Консервированная проба может храниться не более двух суток при температуре (3 - 4) °С.

Проба воды не должна подвергаться воздействию прямого солнечного света. Для доставки в лабораторию сосуды с пробами упаковывают в тару, обеспечивающую сохранность и предохраняющую от резких перепадов температуры.

При отборе проб составляют сопроводительный документ по утвержденной форме, в котором указывают:

Цель анализа, предполагаемые загрязнители;

Место, время отбора;

Номер пробы;

Объем пробы;

Должность, фамилия отбирающего пробу, дата.

8.3 Подготовка прибора к работе

Подготовку спектрофотометра или фотоэлектроколориметра к работе проводят в соответствии с рабочей инструкцией по эксплуатации прибора.

8.4 Приготовление растворов

8 .4 .1 Раствор гидроксида натрия и сегнетовой соли

400 г гидроксида натрия и 60 г сегнетовой соли помещают в стакан вместимостью 1000 см 3 , растворяют в 500 см 3 дистиллированной воды, охлаждают, переносят в мерную колбу вместимостью 1000 см 3 и доводят до метки дистиллированной водой.

8 .4 .2 Раствор салициловой кислоты

Навеску (1,0 г) салициловой кислоты помещают в стакан вместимостью 100 см 3 , растворяют в 50 см 3 этилового спирта, переносят в мерную колбу вместимостью 100 см 3 , доводят до метки этиловым спиртом. Раствор готовят в день использования.

8 .4 .3 Раствор натрия салициловокислого с массовой долей 0 ,5 %

Навеску (0,5 г) натрия салициловокислого растворяют в 100 см 3 дистиллированной воды. Раствор готовят в день использования.

8 .4 .4 Суспензия гидроксида алюминия

125 г алюмоаммонийных или алюмокалиевых квасцов растворяют в 1 дм 3 дистиллированной воды, раствор нагревают до 60 °С и медленно при непрерывном перемешивании прибавляют 55 см 3 концентрированного раствора аммиака. Дают смеси отстояться около 1 часа, фильтруют и промывают осадок гидроксида алюминия многократной декантацией дистиллированной водой до полного удаления свободного аммиака.

8.5 Приготовление градуировочных растворов

8 .5 .1 Основной градуировочный раствор нитрат-ионов с массовой концентрацией 0 ,1 мг/см 3

1) Раствор готовят из ГСО в соответствии с прилагаемой к образцу инструкцией.

2) Навеску (0,1631 г) калия азотнокислого, предварительно высушенного при 105 °С, помещают в стакан вместимостью 100 см 3 , растворяют в 50 см 3 дистиллированной воды, переносят в мерную колбу вместимостью 1000 см 3 и доводят до метки дистиллированной водой.

1 см 3 раствора должен содержать 0,1 мг нитрат-ионов.

Срок хранения растворов 3 месяца.

В ряд колориметрических пробирок вместимостью 10 см 3 пипеткой последовательно отбирают 0,1; 0,5; 1,0; 2,0; 4,0; 6,0; 10,0 см 3 рабочего градуировочного раствора нитрат-ионов (п. 8.5.2) и доводят дистиллированной водой до метки. Содержание нитрат-ионов в растворах соответственно равно 0,1; 0,5; 1,0; 2,0; 4,0; 6,0; 10,0 мг/дм 3 .

Растворы переносят в фарфоровые чашки, добавляют 2 см 3 раствора салициловой кислоты (или 2 см 3 раствора натрия салициловокислого) и выпаривают в фарфоровой чашке на водяной бане досуха. После охлаждения сухой остаток смешивают с 2 см 3 концентрированной серной кислоты и оставляют на 10 мин. Затем содержимое чашки разбавляют 10 - 15 см 3 дистиллированной воды, приливают приблизительно 15 см 3 раствора гидроксида натрия и сегнетовой соли, переносят в мерную колбу вместимостью 50 см 3 , смывая стенки чашки дистиллированной водой, охлаждают колбу в холодной воде до комнатной температуры, доводят дистиллированной водой до метки и полученный окрашенный раствор сразу фотометрируют при l = 410 нм в кюветах с длиной поглощающего слоя 20 мм. Одновременно с обработкой градуировочных растворов проводят «холостой опыт» с дистиллированной водой, который используют в качестве раствора сравнения.

При построении градуировочного графика по оси ординат откладывают значения оптической плотности, а по оси абсцисс - величину концентрации нитрат-ионов в мг/дм 3 .

8.7 Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят не реже одного раза в квартал, а также при смене партий реактивов, после поверки или ремонта прибора. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в п. 8.6).

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия:

(1)

где X - результат контрольного измерения массовой концентрации нитрат-ионов в образце для градуировки;

С - аттестованное значение массовой концентрации нитрат-ионов;

u I(TOE) - стандартное отклонение результатов измерений, полученных в условиях промежуточной прецизионности, %.

Значения u I(TOE) приведены в Приложении А.

Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

9 ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

где r - предел повторяемости, значения которого приведены в .

Таблица 2 - Значения предела повторяемости при вероятности Р = 0,95

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %

Питьевые, поверхностные природные воды

От 0,1 до 3 включ.

Св. 3 до 100 включ.

Сточные воды

От 0,1 до 1 включ.

Св. 1 до 3 включ.

Св. 3 до 100 включ.

При невыполнении условия (4) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6-2002 .

11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Результат измерений в документах, предусматривающих его использование, может быть представлен в виде: X ± = 0,01 × U × X , мг/дм 3 ,

где Х - результат измерений массовой концентрации, установленный по п. 10, мг/дм 3 ;

U - значение показателя точности измерений (расширенная неопределенность измерений с коэффициентом охвата 2).

Значение U приведено в .

Допускается результат измерений в документах, выдаваемых лабораторией, представлять в виде: Х ± 0,01 × U л × X , мг/дм 3 , Р = 0,95, при условии U л < U , где U л - значение показателя точности измерений (расширенной неопределенности с коэффициентом охвата 2), установленное при реализации методики в лаборатории и обеспечиваемое контролем стабильности результатов измерений.

Примечани е .

При представлении результата измерений в документах, выдаваемых лабораторией, указывают:

Количество результатов параллельных определений, использованных для расчета результата измерений;

Способ определения результата измерений (среднее арифметическое значение или медиана результатов параллельных определений).

12 КОНТРОЛЬ ТОЧНОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

12.1 Общие положения

Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

Оперативный контроль процедуры измерений;

Контроль стабильности результатов измерений на основе контроля стабильности среднего квадратического отклонения (СКО) повторяемости, СКО промежуточной (внутрилабораторной) прецизионности и правильности.

Периодичность контроля исполнителем процедуры выполнения измерений и алгоритмы контрольных процедур, а также реализуемые процедуры контроля стабильности результатов измерений регламентируют во внутренних документах лаборатории.

Ответственность за организацию проведения контроля стабильности результатов измерений возлагают на лицо, ответственное за систему качества в лаборатории.

Разрешение противоречий между результатами двух лабораторий проводят в соответствии с 5.3.3 ГОСТ Р ИСО 5725-6-2002 .

12.2 Оперативный контроль процедуры измерений с использованием метода добавок

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры К к с нормативом контроля К .

Результат контрольной процедуры К к рассчитывают по формуле:

(5)

где - результат измерений массовой концентрации нитрат-ионов в пробе с известной добавкой - среднее арифметическое двух результатов параллельных определении, расхождение между которыми удовлетворяет условию (4).

Х ср - результат измерений массовой концентрации нитрат-ионов в исходной пробе - среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4).

C д - величина добавки.

Норматив контроля К рассчитывают по формуле

(6)

где - стандартные отклонения промежуточной прецизионности, соответствующие массовой концентрации нитрат-ионов в пробе с известной добавкой и в исходной пробе соответственно, мг/дм 3 .

Процедуру измерений признают удовлетворительной, при выполнении условия:

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: