Creativenn - Портал рукоделия

Атомно-эмиссионная спектрометрия. Принцип метода заключается в следующем: атому сообщается энергия обычно посредством соударений с высокотемпературными атомами и молекулами в источнике, где происходит атомизация и возбуждение, которое сводится к электронным переходам внутри атома с более низ­ких уровней на более высокие. Образовавшийся возбуждённый атом может потерять приобретённую энергию в процессе излучения и вернуться в первоначальное состояние. Кроме указанного перехода, возможны и другие переходы с более высоких уровней энергии на более низкие, что приводит к возникновению серии эмиссион­ных линий одного элемента.

Интенсивность излучения при данной концентрации атомов определённого элемента в источнике пропор­циональна температуре источника возбуждения. Однако при более высоких температурах большую роль начи­нает играть ионизация; спектр становится более сложным и быстро возрастает эмиссионный фон источника.

Основными достоинствами атомно-эмиссионного метода являются низкие аналитические пределы обна­ружения многих элементов, относительно несложное оборудование, хорошая селективность, быстрота выпол­нения анализа и возможность одновременного многоэлементного определения. Основные ограничения связаны с типом используемого источника возбуждения и неразделенностью процессов атомизации и возбуждения.

Эмиссионная фотометрия пламени. Эмиссионный пламенно-фотометрический анализ основан на измене­нии интенсивности излучения атомов, возбуждённых в пламени, электрической дуге, искре.

Анализируемый раствор вводят в пламя горелки; при этом первоначально атомы анализируемого вещест­ва, поглощая энергию пламени, возбуждаются, т.е. некоторые электроны их переходят на более удалённые от ядра орбиты. Но затем, в результате обратного перехода электронов, энергия выделяется в виде излучения определённой длины волны. Получающиеся при этом спектры называются спектрами испускания или эмисси­онными спектрами, откуда и название метода - эмиссионная фотометрия пламени.

Эмиссионные спектры в пламени довольно просты и состоят из нескольких спектральных линий, отли­чающихся характерной для каждого элемента длиной волны. Это позволяет по резонансному излучению разли­чать анализируемые металлы, использовать эти спектры не только для качественного, но и для количественного анализа. Последний основан на том, что в определённом интервале концентрации анализируемого вещества интенсивность излучения атомов пропорциональна содержанию их в растворе, введённом в пламя. Характер­ную для элемента спектральную линию выделяют с помощью светофильтра, направляют на фотоэлемент, из­меряют силу возникшего в нём тока гальванометром и определяют интенсивность излучения. Содержание оп­ределяемого элемента находят по градуировочному графику, полученному для серии стандартных растворов.



Атомно-абсорбционная спектрометрия - это аналитический метод определения элементов, основанный на поглощении излучения свободными (невозбуждёнными) атомами.

В атомно-абсорбционном анализе имеют дело в основном с абсорбцией резонансного излучения, пред­ставляющего собой характеристичное излучение, соответствующее переходу электрона из основного состояния на ближайший более высокий энергетический уровень.

В ходе определения часть анализируемого образца переводят в атомный пар (аэрозоль) и измеряют погло­щение этим паром излучения характеристичного для определяемого элемента. Атомный пар получают распы­лением раствора анализируемого вещества в пламени. При этом небольшая часть атомов возбуждается пламе­нем, большая часть их остаётся в основном (невозбуждённом) состоянии. Невозбуждённые атомы элемента, находящиеся в плазме в свободном состоянии, поглощают характеристичное резонансное излучение опреде­лённой для каждого элемента длины волны. Вследствие этого оптический электрон атома переходит на более высокий энергетический уровень и одновременно пропускаемое через плазму излучение ослабляется.

Использование резонансного излучения делает этот процесс высокоселективным. Метод обладает доста­точной чувствительностью (предел обнаружения достигает 10 -3 мкг/см 3). Ошибка этого метода не превышает 1...4%.

Зависимость степени поглощения излучения от концентрации атомов описывается законом Бугера- Ламберта-Бера.

В целом атомно-абсорбционный анализ регистрирует поглощение узкой линии излучения атомами, нахо­дящимися в невозбужденном состоянии и обладающими узким пиком поглощения. Поэтому наряду с высокой селективностью этот метод практически свободен от эффектов спектрального наложения, столь характерных для эмиссионной спектроскопии. Мало чувствителен метод и к изменениям температуры пламени.

Благодаря высокой чувствительности и селективности, метод позволяет работать с малыми количествами веществ. Предварительная обработка анализируемых образцов сводится к минимуму, а измерительные опера­ции достаточно просты и не требуют много времени.

В агрохимической службе атомно-абсорбционный анализ используют для определения обменных ионов натрия, калия, кальция и магния в почвах после извлечения 1М раствором хлорида аммония, а также кальция и магния после экстракции из почвы 0,5 М уксусной кислотой.

Метод используется также в экологических исследованиях, при изучении загрязнения почв свинцом и ни­келем. Применяется он и при более обширных экологических исследованиях, требующих определения полного содержания минеральных веществ в почвах.

В растительных материалах (после мокрого или сухого озоления) атомно-абсорбционным методом опре­деляют содержание микроэлементов: цинка, меди, марганца, а также железа и магния.

В пищевых (и кормовых) продуктах металлы могут присутствовать как в виде полезных минеральных ве­ществ, так и в виде нежелательных токсичных элементов. Атомно-абсорбционный анализ используется для оп­ределения содержания свинца и меди в мясе и мясных продуктах, цинка, ртути и мышьяка в пищевых и кормо­вых продуктах растительного происхождения. Следы металлов определяют во фруктовых соках и напитках.

Атомно-абсорбционная спектроскопия находит применение в анализе природных вод (речной и морской воды), а также промышленных сточных вод на содержание следов металлов.

Модульная единица 5. Атомно-эмиссионная спектрометрия СЛАЙД 1

Лекция 2: АТОМНО-ЭМИССИОНАЯ СПЕКТРОМЕТРИЯ

Профилактика.

1. Борьба с острыми кишечными инфекциями.

2. Недопущение различных интоксикаций.

3. Правильное регулярное питание.

Аннотация. В лекции рассматриваются теоретические основы метода атомно-эмиссионной спектроскопии, устройство и принцип действия атомно-эмиссионных спектрометров, возможности метода атомно-эмиссионной спектрометрии с использованием различных источников излучения: пламен, плазмы, электрической дуги и электрической искры, а также с различными диспергирующими устройствами.

Ключевые слова: атомно-эмиссионная спектрометрия, терм, пламена, плазма, дуга, искра, лампа тлеющего разряда, монохроматор, полихроматор, призма, дифракционная решетка.

Рассматриваемые вопросы:

1 вопрос. Теоретические основы метода атомно-эмиссионной спектрометрии.

2 вопрос. Источники излучения, используемые в атомно-эмиссионной спектрометрии.

3 вопрос. Спектрометры для атомно-эмиссионной спектрометрии.

4 вопрос. Возможности метода атомно-эмиссионной спектрометрии.

Цели и задачи изучения модульной единицы. В результате изучения данной модульной единицы студенты должны освоить теоретические основы метода атомно-эмиссионной спектроскопии, познакомиться с устройством и принципом действия атомно-эмиссионных спектрометров, знать возможности метода атомно-эмиссионная спектрометрии с использованием различных источников излучения: пламен, плазмы, электрической дуги и электрической искры, а также с различными диспергирующими устройствами.

2.1.1. Принцип метода.

Атомно-эмиссионная спектрометрия – метод качественного и количественного элементного анализа, основанный на получении и детектировании линейчатых спектров, возникающих в результате перехода внешних электронов атомов в возбужденное состояние и последующего самопроизвольного перехода этих электронов на более низкие и основные уровни с испусканием (эмиссией) избыточной энергии в виде квантов электромагнитного излучения.

Линейчатый спектр специфичен для данного элемента, поэтому надлежащий выбор данной линии и ее выделение с помощью диспергирующей системы позволяет аналитику проверить присут­ствие этого элемента и определить его концентрацию.

1.1.2. Атомные спектры испускания.

Каждый элемент периодической системы имеет определенное число элек­тронов, равное его атомному номеру. Электроны с определенной вероятностью расположены на уровнях и подуровнях вокруг ядра в соответствии с квантовой теорией. Квантовая теория была создана Планком, который предположил, что электромагнитная энергия поглощается или испускается дискретно; это озна­чает, что энергия не непрерывна. Энергетическое состояние каждого электрона в свободном атоме характеризуется четырьмя квантовыми числами:


· главное квантовое число п (n принимает значения от 1 до 7 для атомов в основном состоянии).

· орбитальное квантовое число l (l = 0,1,2,...,n- 1) соответствует подуровням s, р, d, f.

· магнитное квантовое число m (любое целое, удовлетворяющее условию –l < m < ­ +l ).

· спиновое квантовое число s (s = ±1/2).

Полный угловой момент количества движения электрона как от орбитального, так и от спинового квантового числа. Для характеристики полного углового момента количества движения электрона вводится еще одно квантовое число – полное или внутреннее квантовое число j . Для атома, имеющего один валентный электрон j = l + s = l ± ½. Если орбитальное квантовое число больше нуля, то внутренне квантовое число имеет два значения, что соответствует двум различным энергетическим состояниям.

Если заряд ядра атома невелик (меньше 35), а число валентных электронов - два или более, то для совокупности этих валентных электронов вводят­ся новые квантовые числа, которые определяются как суммы соответст­вующих квантовых чисел отдельных электронов:

L = Sl i ; S = Ss i ; J = L + S

Группа энергетических состояний, характеризующихся одними и теми же величинами L иS, имеет близкую энергию и образует один терм.

При записи символа терма прежде всего указывают его основную характеристику: квантовое число суммарного орбитального момента L . Если L = 0, то в символе терма записывают прописную букву S , если L = 1, то пишут Р . L , равные 2 и 3, обозначают буквами D и F соответственно. Слева в виде верхнего индекса указывают число близких по энергии состояний, которые образует данный терм, то есть его мультиплетность. Мультиплетность равна 2S + 1, где S – суммарный спин атома. Таким образом, мультиплетность на единицу больше, чем число неспаренных электронов в атоме. Если мультиплетность терма равна 1, то его называют одиночным или синглетным термом. Терм с мультиплетностью, равной 2, называют двойным или дублетным. Справа внизу от буквенного обозначения L в виде индекса записывают значения j . Перед обозначением терма указывают значение главного квантового числа n . Для полностью заполненных электронных подуровней (s 2 , p 6 , d 10) L + S равно 0.

Например, в атоме натрия первый и второй энергетические уровни заполнены полностью, поэтому термы этого атома определяются его единственным валентным электроном. В основном состоянии этот электрон находится на 3s -подуровне. В этом случае терм атома натрия обозначается так:

3 2 S 1/2 . Следует обратить внимание на левый верхний индекс 2, который свидетельствует о формальной мультиплетности этого терма. На самом же деле все термы S являются синглетными (одиночными). При возбуждении атома натрия электрон с подуровня 3s переходит на более высокие подуровни. Первое возбужденное состояние соответствует переходу электрона на подуровень 3р . В этом случае терм атома натрия записывают как 3 2 Р 3/2, 1/2 . Такая запись соответствует следующим значениям квантовых чисел: n = 3, l = 1, j =3/2 или ½. Этот терм – дублет. Энергетические подуровни атома натрия показаны на рис. 1.1.

Рис. 1.1. Термы атома натрия. Стрелками показаны переходы, вызывающие появление в спектре натрия дублета с длинами волн 588,996 и 588,593 нм.

Каждая спектральная линия отражает переход электрона с одного энергетического уровня на другой. Однако не все переходы разрешены. Существуют правила отбора, указывающие, между какими энергетическими уровнями переходы возможны, а между какими – нет. Возможные переходы называют разрешенными, а невозможные – запрещенными. Перечислим основные правила отбора:

1. Разрешены переходы, при которых терм меняется на единицу. Согласно этому правилу возможны переходы P-S, D-P , но невозможны переходы P-P, D-D или D-S .

2. Внутренне квантовое число при переходе может меняться только на ±1 или совсем не меняться. Запрещены переходы, при которых DJ = ±2.

3. Разрешены переходы без изменения мультиплетности.

Например, в атоме натрия разрешен переход с подуровня 3р (дублетный терм 3 2 Р 3/2,1/2)на подуровень 3s (синглетный терм 3 2 S 1/2). Этот переход вызывает появление в спектре натрия двойной желтой линии (дублета). Этот переход полностью соответствует правилам отбора. В соответствии с первым правилом разрешены переходы Р –S . Согласно второму правилу DJ может равняться ±1, как при переходе 3 2 Р 3/2 - 3 2 S 1/2 , или 0, как при переходе 3 2 Р 1/2 - 3 2 S 1/2 . Не нарушается и третье правило, так как формальная мультиплетность терма 3 2 S 1/2 равна 2.

Наиболее яркой линией в спектре является линия, вызванная переходом с первого возбужденного уровня на основной. Такую линию называют резонансной.

Спектр атома любого элемента существенно отличается от спектра его иона в связи с изменением числа оптических электронов в результате ионизации. В таблицах спектральных линий рядом с символом химического элемента приводят римскую цифру, по которой можно судить о кратности ионизации. Цифра I относится к нейтральному атому, цифра II – к однократно ионизированному атому, т.е. катиону с зарядом +1.

В соответствии с правилами отбора и возможными возбужденными уровнями каждый элемент периодической системы может проявлять набор линий (спектр), специфичный для этого элемента. Это объясняет, почему комбинации линий элемента позволяет провести качественный анализ.

Рис. 2.2. Основные и возбужденные состояния атома и катиона алюминия. Показаны разрешенные оптические переходы.

Например, у атома алюминия (рис. 2.2) 46 электронных уровней ниже энергии ионизации, соответствующие примерно 118 линиям в диапазоне 176-1000 нм. Для одно­зарядного иона А1 существует 226 уровней, они дают примерно 318 линий в диапазоне 160-1000 нм. Частицы А1 I и А1 II испускают относительно про­стые спектры, т. е. с ограниченным числом линий. В таком же диапазоне длин волн уран может испускать несколько десятков тысяч линий, что приводит, вероятно, к наиболее сложному из наблюдаемых спектров. Однако, если ре­зонансные линии можно наблюдать в любом источнике излучения, то линии, возникающие из высоковозбужденных состояний, можно наблюдать только с высокотемпературными источниками излучения или при специальных условиях возбуждения.

Излучение, испускаемое пробой, в которой имеются все компоненты за ис­ключением определяемого, называют фоновым излучением. Оно состоит из линий, испускаемых другими (сопутствующими) элементами и континуума, возникающего из неквантуемых переходов.

2.1.3. Интенсивность спектральных линий.

Количественный анализ возможен, если интенсивность линии можно свя­зать с концентрацией испускающих частиц. Интенсивность линии пропорци­ональна:

1) разности энергий верхнего (E m) и нижнего (Е k) уровней перехода;

2) электронной заселенности (n m ) верхнего уровня (Е т) ;

3) числу возможных переходов между Е т н Е k в единицу времени. Эта ве­личина выражается вероятностью перехода А; ее определение дано Эйн­штейном.

Таким образом, интенсивность линии I можно выразить соотношением

1~ (Е т -Е k А×п т

Связь между заселенностями различных уровней была описана Больцма-ном. Если рассматривать заселенности п т и п k уровней Е т и E k соответствен­но, то их отношение определяется уравнением Больцмана:

где k - константа Больцмана (k = 1,380×10 -23 Дж/К = 0,695см -1 × К -1 = 0,8617× 10-4 эВ/К), Т - температура источника излучения и g - статистиче­ский вес (2J + 1), J - квантовое число полного электронного углового момен­та.

Так как заселенность возбужденных уровней пропорциональна экспоненте величины (- Е), то при увеличении Е заселенность очень быстро уменьшает­ся. Возможный путь преодоления этого ограничения заключается в исполь­зовании высокотемпературных источников излучения, например плазмы. Для основного состояния Е = 0 и:

Чтобы получить отношение п т кобщей заселенности уровней атома (или иона) N

N = n 0 + n 1 + ... + n m + ...

можно просуммировать члены типа g т ехр(-Е т /kТ} для всех возможных уровней и определить статистическую сумму по состояниям (Z) в следующем виде:

Z = g 0 + g 1 exp(-E 1 /kT ) + …+ g m exp(-E m /kT ) + …

Уравнение Больцмана принимает вид:

Статистическая сумма по состояниям есть, следовательно, функция темпера­туры. Однако в диапазоне температур большинства источников излучения, используемых в аналитических приложениях, т. е, 2000-7000 К, эти изменения малы или даже ничтожны.

Значит, интенсивность линии может быть записана в виде:

где Ф – коэффициент пересчета с учетом изотропности по телесному углу 4p стерадиан.

Из этого уравнения видно, что интенсивность линии l пропорциональная числу атомов N .

Когда источник излучения достаточно стабилен и сохраняет постоянную температуру, статистическая сумма по состояниям Z будет оставаться посто­янной и число атомов (ионов) N будет пропорционально концентрации с . Для данной линии определяемого элемента g m , А, l и Е т постоянны. Следова­тельно, интенсивность линии l пропорциональна с , что позволяет проводить количественное определение, В относительном количественном анализе ис­пользуют ряд образцов сравнения для построения градуировочного графика, т. е. зависимости интенсивности от концентрации определяемого элемента. Ин­тенсивность линии определяемого элемента в неизвестной пробе используют для нахождения его концентрации по градуировочпому графику. Теоретически возможно выполнить также абсолютныйколичественный анализ, т. е. анализ без использования процедуры градуировки. Однако абсолютный количествен­ный анализ требует знания температуры, телесного угла испускания и т. д. Эти измерения в рутинном анализе осуществить нелегко.

Следует отметить, что в случае постоянной концентрации определяемого элемента, любые малые изменения характеристик источника излучения могут приводить к изменениям температуры и последующим изменениям интенсив­ности линии из-за изменения заселенности возбужденного уровня. При рас­смотрении резонансной линии Аl I 396,15им (Е т = 25347см" 1) увеличение температуры источника излучения на 100 К соответствует увеличению экспо­ненциального члена (-Е т /kТ) примерно на 50% и 5% при 3000 К и 6000 К соответственно. Это объясняет, почему для получения хорошей воспроизводи­мости и сходимости, а также во избежание дрейфа аналитического сигнала, требуется высокая стабильность источника.

В атомно-эмиссионной спектрометрии источник фактически играет двоя­кую роль: первый этап состоит в атомизации анализируемой пробы с целью получить свободные атомы, обычно в основном состоянии; второй - в возбуж­дении атомов в более высоколежащие энергетические состояния. Идеальный источник для эмиссионной спектрометрии должен проявлять отличные анали­тические и инструментальные характеристики. Аналитические характеристи­ки включают число элементов, которые могут быть определены, правильность и воспроизводимость, селективность, отсутствие физических и химических по­мех, долговременную стабильность, концентрационный динамический диапа­зон и пределы обнаружения. Более того, эмиссионная система должна быть способна работать с пробами любого типа, независимо от их формы (жидкой, твердой или газообразной), с возможностью использовать ограниченное коли­чество пробы. Инструментальные характеристики, представляющие интерес, включают простоту работы и обслуживания, автоматизацию, производитель­ность, надежность и размеры системы. Следуеттакже уделить некоторое вни­мание капиталовложениям и стоимости работы.

Оптические атомно-спектроскопические методы, основанные на энергетических переходах в атомах, можно разделить на три группы:

атомно-эмиссионные; атомно-абсорбционные; атомно-флуоресцентные.

Метод атомно-эмиссионный спектроскопии (АЭС) основан на испускании (эмиссии) квантов электромагнитного излучения возбужденными атомами. Общую схему атомной эмиссии можно представить следующим образом:

А + Е →А --- А* + hv,

где А - атом элемента;

А*- возбужденный атом;

hv - испускаемый квант света;

Е - энергия, поглощаемая атомом.

Возбуждение атома происходит при столкновении с частицами плазмы, дуги или искры, обладающими высокой кинетической энергией. При поглощении атомом энергии 100-600кДж*моль -1 внешний электрон переходит на один из более высоких энергетических уровней и через – 10 -8 с возвращается на какой-либо нижний уровень. При этом энергия выделяется либо в виде света hv определенной частоты, либо теряется в виде теплоты при столкновениях с другими частицами.

В отличие от молекул атом не имеет колебательных и вращательных подуровней, в нем возможны только электронные переходы. Поскольку разность энергий электронных уровней достаточно велика, атомный спектр состоит из отдельных спектральных линий. Эмиссионный спектр состоит из множества спектральных линий разной интенсивности. Интенсивность линий зависит от количества атомов, в которых осуществляется тот или иной переход. Чем больше вероятен переход, тем больше атомов участвует в нем, тем интенсивнее спектральная линия.

Наиболее вероятны переходы с возбужденного уровня, ближайшего к основному. Спектральные линии, соответствующие такому переходу, называют резонансными. Эти линии обладают наибольшей интенсивностью, и их чаще всего используют при анализе.

В атомной спектроскопии необходимо перевести вещество в атомарное состояние - атомизировать. Атомизацию осуществляют пламенными и электротермическими способами.

Эмиссионная фотометрия пламени. Метод основан на измерении интенсивности излучения, испускаемого атомами и молекулами, возбуждаемыми в пламени. Пламя образуется при сгорании различных органических веществ (водород, пропан, ацетилен и т.д.) в окислителях. Температура пламени не высока (до 3000°С), однако ее достаточно для возбуждения резонансных линий наиболее легковозбудимых атомов - менее 600кДж/моль. Температура отдельных частей пламени зависит от состава горючей смеси. Для целей анализа обычно используют верхнюю часть пламени, где собственное излучение пламени, обусловленное продуктами сгорания -фон, наименьшее.

1830 1800 1700 1750 конус 2000 1200 3000

1600 Внутренний Промежуточная 1000 300

Конус зона

Рис. 8. Температура (°С) в пламени «ацетилен с кислородом»

Исследуемое вещество обычно вводят в пламя в виде растворов (распыляют); для качественного анализа можно внести в пламя и твердую пробу*. При этом в пламени протекает ряд процессов: испарение растворителя с образованием твердых частиц вещества, испарение твердых частиц с образованием атомного пара, диссоциация молекул на атомы, частичная ионизация, возбуждение атомов, возвращение атомов в исходное состояние с выделением квантов света.

Интенсивность излучения атомами (молекулами) пропорциональна их концентрации в пламени, которая в свою очередь пропорциональна концентрации ионов в растворе: I = k*c.

Эта прямолинейная зависимость соблюдается при постоянстве коэффициента k, на значение которого могут повлиять такие помехи, как самопоглощение, ионизация, образование труднолетучих соединений, изменение режима работы и др.

Интенсивность излучения в эмиссионных методах измеряют в пламенных фотометрах и спектрофотометрах, преобразуя световой поток в электрический ток с помощью фотоэлементов.

Схема пламенного фотометра включает: распылитель раствора, горелку, в которую подается горючая смесь, монохроматор, фотоэлементы и регистрирующее устройство. В качестве монохроматоров используют интерференционные светофильтры (λ ≈ 13нм). Для поглощения постороннего излучения на пути светового потока ставят абсорбционные светофильтры.

В атомно-эмиссионной спектроскопии используют прямоточные горелки с непосредственным введением смеси раствора с воздухом - аэрозоля в пламя. Реже применяются горелки с предварительным смешением газов и аэрозоля.

Способы определения концентрации. В эмиссионной фотометрии пламени для определения концентрации используют прямолинейную зависимость интенсивности аналитического сигнала излучения от концентрации раствора. Метод требует эталонов, т.е. растворов с точно известной концентрацией. Обычно применяют метод градуировочного графика, который строят в координатах «сила фототока - концентрация». Если состав исследуемых образцов неизвестен или отличается от эталонов, то рекомендуется использовать метод добавок.

Если для возбуждения атомов энергии пламени недостаточно, то используют дуговые и искровые электротермические источники. Наиболее известные электротермические источники - дуга постоянного тока и искровой разряд. Дуга возникает при пропускании постоянного или переменного тока 30 А при напряжении 200 В между двумя электродами. Для получения искрового разряда на пару электродов налагают напряжение до 40кВ. При этом возникает разряд, повторяющийся 120 раз в секунду, а температура пламени достигает 4000°С.

Метод атомно-абсорбционной спектроскопии (ААС) основан на поглощении (абсорбции) электромагнитного излучения атомами вещества в свободном состоянии. Общую схему атомной абсорбции можно представить следующим образом: А + hv → V*.

Атомы поглощают кванты света, соответствующие переходу из основного состояния в возбужденное. В результате излучение, проходящее через атомный пар, ослабляется. Зависимость степени поглощения излучения от концентрации атомов описывается законом Бугера-Ламберта-Бера:

lg (l 0 /l 1) = k*l*c,

где l 0 - интенсивность падающего излучения;

l 1 - интенсивность прошедшего через атомный пар излучения;

l - толщина слоя атомного пара;

k - атомный коэффициент поглощения;

величину lg (l 0 /l 1) называют атомным поглощением А, она аналогична оптической плотности в молекулярной абсорбции.

В ААС аналитический сигнал получают от невозбужденных атомов, поэтому для атомизации подходят лишь такие источники, энергии которых хватает для распада вещества на атомы, но не для возбуждения атомов. Количество возбужденных атомов не должно превышать 0,1% от их общего числа. Этим требованиям удовлетворяют пламенные и электротермические атомизаторы, в которых используется тепловая энергия. Перед атомизацией анализируемый образец переводят в раствор. Чтобы поглощения атомами было заметно, нужно направлять на пробу излучение с очень узким интервалом длин волн. В идеале нужно излучение с одной длиной волны, соответствующей одному энергетическому переходу в атоме исследуемого вещества.

К таким идеальным источникам приближаются лампы с полым катодом, представляющие собой стеклянный баллон с кварцевым окном, заполненный инертным газом. К аноду и катоду, закрепленным в баллоне, приложено высокое напряжение. Цилиндр катода изготавливают из того металла, который нужно определять. Под действием высоковольтного разряда атомы инертного газа ионизируются, направляются к катоду и «выбивают» из него атомы металла, которые возбуждаются и испускают излучение с характерным для него линейчатым спектром. Излучение направляют на пламя, где находятся атомы определяемого элемента, поглощающие резонансное излучение источника. Таким образом, для определения каждого элемента нужна своя лампа. Катод можно изготовить из сплава разных металлов, что позволяет, не меняя лампу, определить сразу несколько соответствующих элементов.

Рис. 9. Схема прибора для атомно-абсорбционных изменений: 1 - лампа с полым катодом; 2 - модулятор; 3 - пламя; 4 - монохроматор; 5 - детектор.

Роль кювет выполняет пламя. Для выделения из линейчатого спектра нужной линии служат монохроматоры. Детекторы не отличаются от обычно используемых в оптических приборах. В ААС измеряют относительную интенсивность двух потоков излучения. Один из них проходит через атомный пар, другой является потоком сравнения. На эти световые потоки возможно наложение постороннего излучения - флуоресценции атомов исследуемого вещества при возвращении из возбужденного состояния и свечения пламени. Для устранения мешающего влияния этих видов излучения используют модуляцию светового потока. На пути падающего излучения устанавливают модулятор - диск с прорезями. При этом на детектор попадает постоянный сигнал от пламени, переменный сигнал от источника, прошедший через пробу и другие посторонние сигналы. Переменный сигнал усиливают, остальные отсекают. Сигналы преобразуют в электрический ток.

Для определения концентрации в основном используют метод градуировочного графика и метод добавок.

Метод ААС применим для определения большинства металлов в самых разных объектах. Достоинствами метода является малая зависимость результатов от температуры, высокая чувствительность, что связано с участием в поглощении невозбужденных атомов. Метод ААСобладает высокой избирательностью, поскольку помехи, связанные с перекрыванием спектральных линий, малы. Метод экспресен, погрешность результатов не превышает 4%, предел обнаружения достигает 10 -2 мкг/мл. Методом ААС можно определить 76 элементов в различных объектах.

К недостаткам ААС можно отнести обязательное наличие набора ламп с полым катодом для каждого элемента, а также необходимость перевода образца в растворимое состояние.

История атомного спектрального анализа началась с опытов Исаака Ньютона (1666 г) по разложению света в спектр. Первые атомные спектры наблюдали в начале XIX века в ходе астрономических исследований. Но возникновение спектрального анализа как метода определения химического состава вещества относят к 1859 г., когда немецкие ученые Г. Кирхгоф и Р. Бунзен, исследуя поведение паров солей в пламени, наблюдали появление линий в спектрах, характеристичных для определенного элемента. Дальнейшее развитие методов атомной спектроскопии определялось запросами практики и возможностями приборостроения. В таблице 4.1 приведена классификация основных методов атомной спектроскопии.

Таблица 4.1. Классификация основных методов атомной спектроскопии

Их можно разделить на две группы. К первой группе относятся методы оптической атомной спектроскопии (АЭС, ААС, АФС). Они основаны на изменении энергии валентных электронов свободных атомов. Эти процессы протекают при высокой температуре (в пламени, плазме и т.д.). Методы другой группы основаны на возбуждении электронов внутренних оболочек под воздействием излучения более высокой энергии, которое находится в рентгеновской области спектра.

Некоторые из методов, приведенных в табл. 4.1 (атомно-эмиссионный и неорганический рентгенофлуоресцентный) дают возможность одновременно идентифицировать несколько десятков элементов. Такие групповые «обзорные» методы часто используют как вариант обзорного качественного (скрининг) анализа.

В настоящее время основными методами в практической аналитической химии остаются методы атомной спектроскопии в оптическом диапазоне спектра . Они основаны на (рис. 4.1):

а) эмиссии (испускание);

б) абсорбции (поглощение);

в) флуоресценции (быстрое излуча-тельное гашение возбужденных час-тиц) оптического излучения сво-бодными атомами определяемых элементов.

В связи с этим различают методы

атомно-эмиссионной (АЭС), атомно-абсорбционной (ААС) и атомно-флуоресцентной (АФС) спектро-скопии. Каждый из видов спектрального анализа имеет свою специфику и особенности.

3.1 Эмиссионный спектральный анализ

Эмиссионный спектральный анализ является физико-химическим методом анализа, а точнее оптическим методом.

Каждое вещество, отличающееся от других веществ своим составом и строением, обладает некоторыми индивидуальными, присущими только ему свойствами. ПР, спектры испускания, поглощения и отражения веществом излучений имеют характерный для каждого вещества вид. По растворимости и форме кристаллов также можно узнать данное вещество.

При использовании ф-х методов нас интересует концентрация анализируемого вещества, т. е. Его содержание в единице объема исследуемого раствора. Концентрацию веществ определяют пользуясь тем, что между ней и значением исходящих от вещества сигналов всегда существует зависимость. Независимо от метода анализа способы расчета содержания искомого компонента в продукте едины для всех физико-химических методов.

3.2 Атомно-эмиссионный спектроскопия: самый популярный многоэлементный метод анализа

Устройство спектрометра для измерения интенсивности излучения света, используемого возбужденными атомами - отдельный внешний источник излучения как токовой, отсутствует: сама проба,ее возбужденные атомы, служат источником излучения. Атомизация и возбуждение атомов происходит в атомизаторе одновременно. Атомизатор представляет собой источник низкотемпературной или высокотемпературной плазмы.

Метод основан на изучении спектров излучения, получаемых при возбуждении проб в жестком источнике возбуждения. Для получения спектра эмиссии частицам анализируемого вещества необходимо придать дополнительную энергию. С этой целью пробу при спектральном анализе вводят в источник света, где она нагревается и испаряется, а попавшие в газовую фазу молекулы диссоциируют на атомы, которые при столкновениях с электронами переходят в возбужденное состояние. В возбужденном состоянии атомы могут находится очень недолго (10-7 сек). Самопроизвольно возвращаясь в нормальное или промежуточное состояние, они испускают избыточную энергию в виде квантов света.

Интенсивность спектральной линии или мощность излучения при переходе атомов из одного энергетического состояния в другое определяется числом излучающих атомов Ni (числом атомов, находящихся в возбужденном состоянии i) и вероятностью Aik перехода атомов из состояния i в состояние k.

Оптимальная температура, при которой достигается максимальная интенсивность линии, зависит от потенциала ионизации атомов и энергии возбуждения данной спектральной линии. Кроме того, степень ионизации атомов, а следовательно, и интенсивность спектральной линии зависят также от химического состава и концентраций других элементов.

Интенсивность спектральной линии зависит от температуры источника света. Поэтому в атомно-эмиссионный спектральный анализе принято измерять интенсивность аналитической линии относительно интенсивности некоторой линии сравнения. Чаще всего это линия, принадлежащая основному компоненту пробы.

В практике атомно-эмиссионного спектрального анализа в качестве источников возбуждения спектров применяют электрические дуги постоянного и переменного тока, пламя, низко- и высоковольтную конденсированную искру, низковольтный импульсный разряд, микроволновой разряд и др.

Для регистрации спектра используют визуальные, фотографические и фотоэлектрические устройства. В простейших приборах - стилометрах и стилоскопах оценка интенсивности спектральных линий производится визуально через окуляр. В спектрографах в качестве приемника излучения используют фотопластинки. В квантометрах и фотоэлектрических стилометрах приемником излучения служит фотоэлимент.

Для количественного анализа необходимо выполнить еще одну операцию: измерить интенсивность спектральных полос, принадлежащих макроэлементам, и по предварительно построенным калибровочным графикам или по эталонам вычислить их концентрацию, т. е. установить количественный состав пробы. Для количественного анализа методом атомно-эмиссионной спектроскопии плазма как источник возбуждения предпочтительнее, чем дуговой или искровой разряд. Вследствие колебаний условий возбуждений при определении концентрации элемента следует для сравнения использовать линию еще какого-нибудь элемента, называемого внутренним стандартом.

Качественный анализ продуктов питания методом атомно-эмиссионной спектроскопии включает следующие операции: получение спектра, определение длин волн спектральных линий. По этим данным с помощью справочных таблиц устанавливают принадлежность спектральных линий к определенным макроэлементам, т. е. Определяют качественный состав пробы.

С использованием плазменных атомизаторов также возможен качественный анализ на металлы и те неметаллы, энергия возбуждения которых лежат в УФ-видимой области.

Все методы атомно-эмиссионной спектроскопии являются относительными и требуют градуировки с использованием подходящих стандартов.

Измерение интенсивности спектральных линий в эмиссионном спектральном анализе могут осуществляться визуальным, фотографическим и фотоэлектрическими способами.

В первом случае проводят визуальное сравнение интенсивностей спектральных линий определяемого макроэлемента и близлежащих линий из спектра основного компонента пробы.

Фотографические способы регистрации спектров применяют в атомно-эмиссионном спектральном анализе наиболее широко. Их преимуществом является документальность анализа, одновременность регистрации, низкие пределы обнаружения многих элементов и возможность многократной статистической обработки спектров

В случае фотографической регистрации градуировочные графики претерпевают сдвиг из-за колебаний свойств фотоэмульсии от одной пластинки к другой и недостаточно точного воспроизведения условий проявления.

Для получения данных с высокой скоростью и точностью широкое применение находят фотоэлектрические способы регистрации и фотометрии спектров. Сущность этих способов заключается в том, что световой поток нужной аналитической линии отделяют от остального спектра пробы с помощью монохроматора и преобразуют в электрический сигнал. Мерой интенсивности линии служит значение этого сигнала (сила тока или напряжение).

Современные спектрометры снабжены базами данных, содержащими до 50000 важнейших линий различных элементов. Путем последовательного сканирования всей области длин волн на таких приборах можно провести полный качественный анализ за достаточно небольшое время - 45 мин.

Атомно-эмиссионная спектроскопия находит применение везде, где требуется многоэлементный анализ: в медицине, при исследовании состава руд, минералов, вод, анализе качества продуктов питания и содержании в них макроэлементов.

3.3 Атомно-абсорбционный спектральный анализ

ААА - это метод определения концентрации по поглощению слоев параметров элемента монохроматического света, длина волны которого соответствует центру линии поглощения. Анализ проводят по наиболее чувствительным в поглощении спектральным линиям, которые соответствуют переходам из основного состояния в более высокое энергетическое состояние. В большинстве случаев эти линии являются также и наиболее чувствительными и в эмиссионном анализе. Если молекулы вещества поглощают свет полосами в широких интервалах волн, то поглощение парами атомов происходит в узких пределах, порядка тысячной доли нанометра.

В ААА анализируемое вещество под действием тепловой энергии разлагается на атомы. Этот процесс называется атомизацией, т. е. переведение вещества в парообразное состояние, при котором определяемые элементы находятся в виде свободных атомов, способных к поглощению света. Излучение и поглощение света связаны с процессами перехода атомов из одного стационарного состояния в другое. Возбуждаясь атомы переходят в стационарное состояние k с энергией Ek и затем, возвращаясь в исходное основное состояние i с энергией испускают свет определенной частоты.

Излучательные переходы осуществляются спонтанно без какого-либо внешнего воздействия.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: